1) A current of $\frac{2\pi}{\lambda}$ Hz frequency is passing through an A.C. circuit having a series combination of $R = 100 \, \Omega$ and $L = 2 \, H$, the phase difference between voltage and current is

(A) 45°
(B) 60°
(C) 30°
(D) 90°

2) In an A.C. circuit having only capacitor, the current (A) lags behind the voltage by π in phase
(B) leads the voltage by $\frac{\pi}{2}$ in phase
(C) leads the voltage by π in phase
(D) lags behind the voltage by $\frac{\pi}{2}$ in phase

3) An alternating voltage given as $V = 100\sqrt{2}\sin100t$ volt is applied to a capacitor of $1 \, \mu F$. The current reading of the ammeter will be equal to _____ mA.

(A) 80
(B) 20
(C) 40
(D) 10

4) The distance of the closest approach of an alpha particle fired at a nucleus with kinetic energy K is r_0. The distance of the closest approach when the alpha particle is fired at the same nucleus with kinetic energy $2K$ will be

(A) $2r_0$
(B) $4r_0$
(C) $\frac{r_0}{4}$
(D) $\frac{r_0}{2}$

(Space for Rough Work)
5) Number of spectral line in hydrogen atom is
(A) \(\alpha \) (B) 8
(C) 15 (D) 6

6) A radioactive element X disintegrates successively as under
\[
\begin{align*}
\text{X} & \rightarrow \text{X}_1 \rightarrow \text{X}_2 \rightarrow \text{X}_3 \rightarrow \text{X}_4 \\
\text{II} & \rightarrow \text{II} & \rightarrow \text{II} & \rightarrow \text{II}
\end{align*}
\]
If atomic number and atomic mass number of X are respectively 72 and 180, what are the corresponding values for X_4?
(A) 70, 172 (B) 69, 172
(C) 71, 176 (D) 72, 176

7) The energy released by the fission of one uranium atom is 200 MeV. The number of fission per second required to produce 6.4 W power is
(A) \(2 \times 10^{10} \) (B) \(2 \times 10^{11} \)
(C) \(10^{10} \) (D) \(10^{11} \)

If by successive disintegration of \({}_{92}^{238}\text{U} \), the final product obtained is \({}_{82}^{206}\text{Pb} \), then how many number of \(\alpha \) and \(\beta \) particles are emitted?
(A) 8 and 12 (B) 6 and 8
(C) 12 and 6 (D) 8 and 6

(GUJCET-E-2015 BOOKLET B)
9) A change of 0.04 V takes place between the base and the emitter when an input signal is connected to the CE transistor amplifier. As a result, 20 μA change takes place in the base current and a change of 2 mA takes place in the collector current. Find the input resistance and A.C. current gain.

(A) 1kΩ, 200
(B) 1kΩ, 100
(C) 2kΩ, 200
(D) 2kΩ, 100

\[\frac{\Delta V_{BE}}{\Delta I_B} = 20 \times 10^{-6} \]

10) A plane polarized light is incident normally on a tourmaline plate. Its \(\vec{E} \) vectors make an angle of 60° with the optic axis of the plate. Find the percentage difference between initial and final intensities.

(A) 90%
(B) 50%
(C) 75%
(D) 25%

\[\frac{I}{I_0} = \frac{1}{\cos 60°} \]

\(\frac{I_0}{u} \)

11) Light of wavelength \(\lambda \) is incident on slit of width \(d \). The resulting diffraction pattern is observed on a screen placed at distance \(D \). The linear width of the central maximum is equal to width of the slit, then \(D = \)

(A) \(\frac{2\lambda}{d} \)
(B) \(\frac{2\lambda^2}{d} \)
(C) \(\frac{d}{\lambda} \)
(D) \(\frac{d^2}{2\lambda} \)

\[\gamma \]

(Space for Rough Work)
12) In a N–P–N transistor about 10^{10} electrons enter the emitter in 2 μs, when it is connected to a battery. Then $I_A = \underline{\text{?}} \mu A$.

(A) 1600
(B) 400
(C) 800
(D) 200

$$I_C = \frac{2 \times 10^{-6}}{1.6 \times 10^{-9}} = \frac{1.6 \times 10^{9}}{1.6 \times 10^{-3}} = 10^{12} \text{ A}$$

13) The effective length of a magnet is 31.4 cm and its pole strength is 0.8 Am.

The magnetic moment, if it is bent in the form of a semicircle is \underline{?} Am².

(A) 0.12
(B) 1.2
(C) 0.16
(D) 1.6

14) Equal currents are passing through two very long and straight parallel wires in the same direction. They will \underline{?}.

(A) neither attract nor repel each other
(B) attract each other
(C) lean towards each other
(D) repel each other

(Space for Rough Work)
15) A voltmeter of a very high resistance is joined in the circuit as shown in figure. The voltage shown by this voltmeter will be

\[V = 10 \text{ V} \]

16) A galvanometer of resistance 50 ohm is connected to a battery of 8 V along with a resistance of 3950 ohm in series. A full scale deflection of 30 divisions obtained in the galvanometer. In order to reduce this deflection to 15 divisions, the resistance in series should be

(A) 7950 ohm
(B) 1950 ohm
(C) 2000 ohm
(D) 7900 ohm

17) At a place on Earth, the vertical component of Earth's magnetic field is 3 times its horizontal component. The angle of dip at this place is

(A) 0°
(B) 60°
(C) 45°
(D) 30° tan \(-\frac{\beta}{\phi} \)
18) Which gate can be obtained by shorting both the input terminals of a NOR gate.
 (A) NAND (B) NOT (C) AND (D) OR

19) An optical fiber can offer a band width of
 (A) 250 MHz (B) 100 GHz (C) 750 MHz (D) 100 MHz

20) To transmit a signal of 3 KHz frequency, the minimum length of antenna is _____ km
 (A) 75 (B) 25 (C) 50
 \[\frac{C^2 r^2}{3 \times 10^8} \] (D) \[\frac{1 \times 10^8 \cdot 3 \times 10^2}{10^5} \] \[\frac{0.0001}{4} \]

21) 27 identical drops of mercury are charged simultaneously with the same potential of 10 Volt. Assuming the drop to be spherical, if all the charged drops are made to combine to form one large drop, then its potential will be _____ Volt.
 (A) 10 (B) 40 (C) 160 (D) 90

22) When \(10^{19}\) electrons are removed from a neutral metal plate through some process, the charge on it becomes _____
 (A) \(10^{-19}\) C (B) \(+1.6\) C (C) \(10^{19}\) C (D) \(-1.6\) C

(Space for Rough Work)
23) One moving electron when comes closer to other stationary electron, then its kinetic energy and potential energy respectively _______ and _______.
(A) decreases, decreases (B) increases, increases
(C) decreases, increases (D) increases, decreases

24) An inclined plane of length 5.60 m making an angle of 45° with the horizontal is placed in an uniform electric field E = 100 Vm⁻¹. A particle of mass 1 kg and charge 10⁻² C is allowed to slide down from rest position from maximum height of slope. If the co-efficient of friction is 0.1, the time taken by the particle to reach the bottom is _______.
(A) 1 s (B) 1.41 s
(C) 2 s (D) None of these

25) Charges 1 μC are placed at each of the four corners of a square of side 2√2 m. The potential at the point of intersection of the diagonals is _______. (K = 9 x 10⁹ SI unit)
(A) 18 x 10³ V (B) 1800 V
(C) 18√2 x 10³ V (D) None of these

26) A point charge q is situated at a distance r on axis from one end of a thin conducting rod of length L having a charge Q (uniformly distributed along its length). The magnitude of electric force between the two is _______.
(A) \(\frac{KQq}{r(r+L)} \) (B) \(\frac{KQq}{r^2} \)
(C) \(\frac{KQq}{r(r-L)} \) (D) \(\frac{2KQ}{r(r+L)} \)

(Space for Rough Work)
27) If alpha particle and deuteron move with velocity \(v \) and \(2v \) respectively, the ratio of their de-Broglie wave length will be ________.

(A) \(\sqrt{2} : 1 \)
(B) \(2 : 1 \)
(C) \(1 : 1 \)
(D) \(1 : \sqrt{2} \)

28) de-Broglie wave length of atom at absolute temperature will be

(A) \(\sqrt{2mKT} \)
(B) \(\frac{h}{\sqrt{3mKT}} \)
(C) \(\frac{\sqrt{2mKT}}{h} \)
(D) \(\frac{h}{mKT} \)

29) If the wave length of light is 4000Å, then the number of waves in 1 mm length will be ________.

(A) 25000
(B) 2500
(C) 25
(D) 250

30) The frequencies of X rays, \(\gamma \) rays and Ultra violet rays are respectively \(p \), \(q \) and \(r \) then

(A) \(p > q, q < r \)
(B) \(p > q, q > r \)
(C) \(p < q, q < r \)
(D) \(p < q, q > r \)

31) Photons having energy 1eV and 2.5 eV successively incident on a metal, having work function is 0.5 eV. The ratio of maximum speed of emitted electrons is

(A) \(1 : 3 \)
(B) \(2 : 1 \)
(C) \(3 : 1 \)
(D) \(1 : 2 \)

(Space for Rough Work)
32) A and B are two points on a uniform ring of radius r. The resistance of the ring is R. \(\angle AOB = \theta \) as shown in the figure. The equivalent resistance between points A & B is ________.

![Diagram of a ring with points A and B]

\[R_{\text{eq}} \left(\frac{2\pi - \theta}{2\pi} \right) \]

(A) \(\frac{R(2\pi - \theta)}{4\pi} \)
(B) \(\frac{R(2\pi - \theta)}{4\pi} \)
(C) \(R \left(1 - \frac{\theta}{2\pi} \right) \)
(D) \(\frac{R\theta}{2\pi} \)

33) Two wires of equal length and equal diameter and having resistivities \(\rho_1 \) and \(\rho_2 \) are connected in series. The equivalent resistivity of the combination is ________.

![Diagram of two wires connected in series]

(A) \(\sqrt{\rho_1 \rho_2} \)
(B) \(\frac{\rho_1 + \rho_2}{2} \)
(C) \(\frac{\rho_1 \rho_2}{\rho_1 + \rho_2} \)
(D) \(\frac{(\rho_1 + \rho_2)}{2} \)
34) Match the following two columns.

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Electrical resistance</td>
<td>p) ML²T⁻³A⁻²</td>
</tr>
<tr>
<td>b) Electrical potential</td>
<td>q) ML²T⁻³A⁻²</td>
</tr>
<tr>
<td>c) Specific resistance</td>
<td>r) ML²T⁻³A⁻¹</td>
</tr>
<tr>
<td>d) Specific conductance</td>
<td>s) None of these</td>
</tr>
</tbody>
</table>

(A) \(a - p, b - r, c - q, d - s \)
(B) \(a - q, b - r, c - p, d - s \)
(C) \(a - p, b - q, c - s, d - r \)
(D) \(a - q, b - s, c - r, d - p \)

35) Angle of minimum deviation for a prism of refractive index 1.5 is equal to the angle of prism of given prism. Then the angle of prism is \(\sin(48°36') = 0.75 \)

(A) 82°48'
(B) 80°
(C) 60°
(D) 41°24'

36) A ray of light passes from a medium A having refractive index 1.6 to the medium B having refractive index 1.5. The value of critical angle of medium A is

(A) \(\sin^{-1}\left(\frac{15}{16}\right) \)
(B) \(\sin^{-1}\left(\frac{16}{15}\right) \)
(C) \(\sin^{-1}\left(\frac{1}{2}\right) \)
(D) \(\sin^{-1}\left(\frac{15}{16}\right) \)

(Space for Rough Work)
37) The power of plane mirror is ________.
(A) 4D
(B) 0
(C) 2D
(D) ∞

38) Light waves travel from optically rarer medium to optically denser medium. Its velocity decreases because of change in ________
(A) phase
(B) wavelength
(C) amplitude
(D) frequency

39) The Network shown in Figure is a part of the circuit. (The battery has negligible resistance)

At a certain instant the current $I = 2 \, A$ and it is decreasing at the rate of $10^2 \, A/s$. What is the potential difference between the points B and A?
(A) 15 V
(B) 8.5 V
(C) 10 V
(D) 8.0 V

40) A rod of 10 cm length is moving perpendicular to uniform magnetic field of intensity $5 \times 10^{-2} \, Wb/m^2$. If the acceleration of the rod is $5 \, m/s^2$ then the rate of increase of induced emf is ________
(A) $20 \times 10^{-4} \, Vs$^{-1}
(B) $25 \times 10^{-4} \, Vs$
(C) $20 \times 10^{-4} \, Vs$
(D) $2.5 \times 10^{-4} \, Vs^{-1}$

(Space for Rough Work)
CHEMISTRY

41) What is IUPAC name for isophthalic acid?
 (A) Benzene - 1, 5 dicarboxylic acid
 (B) Benzene - 1, 2 dicarboxylic acid
 (C) Benzene - 1, 4 dicarboxylic acid
 (D) Benzene - 1, 3 dicarboxylic acid

42) What is the name for red azo dye?
 (A) p - N, N dimethyl amino azo benzene
 (B) β - naphthyl azo benzene
 (C) p - amino azo benzene
 (D) p - hydroxy azo benzene

43) Which of the following is not formed by Sandmayer reaction?
 (A) C₆H₅CN
 (B) C₆H₅I
 (C) C₆H₅Br
 (D) C₆H₅Cl

For which vitamin liver is not the source?
 (A) Vitamin - H
 (B) Vitamin - B₂
 (C) Vitamin - B₁₂
 (D) Vitamin - B₇

(Space for Rough Work)
45) In which of the following compound, all the monosaccharide units are not joined by C₁ – O – C₄ chain.

(A) Amylopectin (B) Lactose
(C) Cellulose (D) Maltose

46) Which of the following polymer is formed by cationic addition polymerisation reaction?

(A) PVC (B) Poly styrene
(C) Teflon (D) Butyl rubber

47) Which of the following polymer is used in pigment?

(A) Orlon (B) Neoprene
(C) Teflon (D) Buna - S

48) To prevent food from spoilage by microorganism, which substance is used?

(A) Tetrazine (B) Asperlo
(C) Salt of sorbic acid (D) Aspartame

(Space for Rough Work)
49) Which of the following defect is seen in FeO?
 (A) Impurity defect
 (B) Metal deficiency defect
 (C) Displacement defect
 (D) Metal excess defect

50) Which of the following substance possess antiferromagnetic property?
 (A) MnO
 (B) CrO₂
 (C) H₂O
 (D) Fe₃O₄

51) The boiling points for aqueous solutions of sucrose and urea are same at constant temperature. If 3 gm of urea is dissolved in its 1 litre solution, what is the weight of sucrose dissolved in its 1 litre solution?
 [Urea - 60 gm/mole, sucrose = 342 gm/mole]
 (A) 34.2 gram
 (B) 17.1 gram
 (C) 6.0 gram
 (D) 3.0 gram

52) Which option is inconsistent for Raoult’s law?
 (A) Solute undergoes dissociation in solution
 (B) The change in heat of dilution for solution = 0
 (C) Solute does not undergo association in solution
 (D) Volume of liquid solvent + volume of liquid solute = volume of solution.

(Space for Rough Work)

GUJCET-E-2015
BOOKLET B [20]
53) Which colligative property is more useful to determine the molecular weight of the substances like proteins and polymers?

(A) Osmotic pressure
(B) Elevation in boiling point
(C) Depression of freezing point
(D) Lowering of vapour pressure

54) The resulting solution obtained at the end of electrolysis of concentrated aqueous solution of NaCl.

(A) the colour of red or blue litmus does not change
(B) turns blue litmus into red
(C) remains colourless with phenolphthalein
(D) turns red litmus into blue

55) The value of E_{red} for metal A, B and C are 0.34 Volt, -0.80 Volt and -0.46 Volt respectively. State the correct order for their ability to act as reducing agent.

(A) C > A > B
(B) A > B > C
(C) B > C > A
(D) C > B > A

56) Two electrolytic cells containing molten solutions of Nickel chloride & Aluminium chloride are connected in series. If same amount of electric current is passed through them, what will be the weight of Nickel obtained when 18 gm of Aluminium is obtained? (Al - 27 gm/mole, Ni - 58.5 gm/mole$^{-1}$)

(A) 5.85 gm
(B) 117 gm
(C) 29.25 gm
(D) 58.5 gm

GUJCET-E-2015
BOOKLET B
[21]
57) Which method is used to get very pure germanium used in semiconductor?
 (A) zone-refining
 (B) vapour-phase refining
 (C) liqation
 (D) electrolysis

58) Which product will be obtained in the following reaction?

 Reaction: \[\text{P}_4(s) + 3\text{NaOH}_{(aq)} + 3\text{H}_2\text{O}_{(l)} \rightarrow 2\text{PH}_3(g) + 3\text{NaH}_2\text{PO}_2 \]

 (A) \(2\text{PH}_3(g) + 3\text{NaH}_2\text{PO}_2_{(aq)}\)
 (B) \(\text{PH}_3(g) + 3\text{NaH}_2\text{PO}_2_{(aq)}\)
 (C) \(2\text{PH}_3(g) + 3\text{Na}_2\text{HPO}_2_{(aq)}\)
 (D) \(\text{PH}_3(g) + 3\text{Na}_2\text{HPO}_2_{(aq)}\)

59) The molecular formulae for phosgene and tear gas are _______ and _______, respectively.

 (A) \(\text{COCl}_2\) and \(\text{CCl}_3\text{NO}_2\)
 (B) \(\text{COCl}_2\) and \(\text{CCl}_2\text{NO}_2\)
 (C) \(\text{COCl}_2\) and \(\text{CCl}_3\text{NO}_2\)
 (D) \(\text{SOCl}_2\) and \(\text{CCl}_2\text{NO}_2\)

60) Which of the following mixture is called Aquaregia?

 (A) Three parts of conc. HCl and 1 part of conc. HNO₃
 (B) Three parts of dil. HCl and 1 part of conc. HNO₃
 (C) Three parts of conc. HCl and 1 part of dil. HNO₃
 (D) Two parts of conc. HCl and two parts of conc. HNO₃

(Space for Rough Work)
61) Which of the following is allylic halide?
(A) 3-chloro cyclo hex-1-ene
(B) (1-bromo ethyl) benzene
(C) 1-bromo benzene
(D) Benzyl chloride

62) 50% of the reagent is used for dehydrohalogenation of 6.45 gm \(\text{CH}_3\text{CHCl}_2 \).
What will be the weight of the main product obtained?

\[\text{At. mass of H, C and Cl are 1, 12 & 35.5 gm/mole}^{-1} \text{ respectively}. \]

(A) 5.6 gm
(B) 1.4 gm
(C) 2.8 gm
(D) 0.7 gm

63) Name the following reaction \(\text{CH}_3\text{CH}_2\text{Cl} + \text{NaI (acetone)} \rightarrow \text{CH}_3\text{CH}_2\text{I} + \text{NaCl} \)
(A) Hell-Volhard Zelinsky reaction
(B) Frinkel-stein reaction
(C) Wurtz reaction
(D) Swartz reaction

64) Which reagent is used for bromination of methyl phenyl ether?

(A) \(\text{HBr} / \Delta \)
(B) \(\text{Br}_2 / \text{CH}_3\text{COOH} \)
(C) \(\text{Br}_2 / \text{FeBr}_3 \)
(D) \(\text{Br}_2 / \text{Red P} \)

(Space for Rough Work)
65) Which of the following acid does not have –COOH group?
 (A) Salicylic acid (B) Picric acid
 (C) Benzoic acid (D) Ethanoic acid

66) Which of the following statement is not correct?
 (A) Boiling point of o-nitrophenol is lower than that of p-nitrophenol
 (B) Phenol is neutralised by sodium carbonate
 (C) Solubility of phenol in water is more than that of chlorobenzene
 (D) Phenol is used to prepare analgesic drugs

67) Total order of reaction \(X + Y \rightarrow XY \) is 3. The order of reaction with respect to \(X \) is 2. State the differential rate equation for the reaction.
 (A) \(\frac{d[X]}{dt} = K[X][Y]^2 \) (B) \(\frac{d[X]}{dt} = K[X]^2[Y]^3 \)
 (C) \(\frac{d[X]}{dt} = K[X]^3[Y] \) (D) \(\frac{d[X]}{dt} = K[X]^3[Y] \)

68) \(X \xrightarrow{\text{Step-I}} Y \xrightarrow{\text{Step-II}} Z \) is a complex reaction. Total order of reaction is 2 and Step - II is slow step. What is molecularity of Step-II?
 (A) 4 (B) 2
 (C) 3 (D) 1

(Space for Rough Work)
Reaction $3\text{ClO}^- \rightarrow \text{ClO}_3^- + 2\text{Cl}^-$ occurs in following two steps.

(i) $\text{ClO}^- + \text{ClO}^- \xrightarrow{k_1} \text{ClO}_2^- + \text{Cl}^-$ (Slow step)

(ii) $\text{ClO}_2^- + \text{ClO}^- \xrightarrow{k_2} \text{ClO}_3^- + \text{Cl}^-$ (Fast step)

then the rate of given reaction = ________.

(A) $K_2[\text{ClO}^-]^3$
(B) $K_1[\text{ClO}^-]$
(C) $K_2[\text{ClO}_2^-][\text{ClO}^-]$
(D) $K_1[\text{ClO}^-]^2$

70) At given temperature and pressure adsorption of which gas of the following will take place the most?

(A) Di-nitrogen N_2
(B) Di oxygen O_2
(C) Ammonia NH_3
(D) Di hydrogen H_2

71) Which type of colloid is the dissolution of sulphur (S_8)?

(A) Macromolecular colloid
(B) Micelle
(C) Multimolecular colloid
(D) Associated colloid

72) For Adsorption phenomenon,

(A) $\Delta H = +ve, \Delta S = +ve$
(B) $\Delta H = -ve, \Delta S = +ve$
(C) $\Delta H = -ve, \Delta S = -ve$
(D) $\Delta H = +ve, \Delta S = -ve$

(Space for Rough Work)
73) Which of the following statement is incorrect for KMnO₄?
 (A) It is dark purple coloured amorphous substance.
 (B) It is used as antiseptic.
 (C) It is used as bleaching agent in textile industries.
 (D) It is an oxidising agent.

74) Which of the following ion has the maximum theoretical magnetic moment?
 (A) Co²⁺
 (B) Cr³⁺
 (C) Ti³⁺
 (D) Fe³⁺

75) Which of the following oxide has the maximum basicity?
 (A) Gd₂O₃
 (B) Pr₂O₃
 (C) Sm₂O₃
 (D) La₂O₃

76) Which of the following spectrochemical series is true?
 (A) SCN⁻ < F⁻ < en < CO < NH₃
 (B) SCN⁻ < F⁻ < NH₃ < en < CO
 (C) SCN⁻ < F⁻ < en < NH₃ < CO
 (D) SCN⁻ < NH₃ < F⁻ < en < CO

(Space for Rough Work)
77) Which of the following complex is paramagnetic?

(A) $[\text{NiCl}_4]^{2-}$
(B) $[\text{Co(NH}_3)_6]^{3+}$
(C) $[\text{Ni (CN)}_4]^{2-}$
(D) $[\text{Ni (CO)}_4]$

78) Both $[\text{Ni (CO)}_4]$ and $[\text{Ni(CN)}_4]^{2-}$ are diamagnetic. The types of hybridisation of Ni in these complexes are __________ & __________ respectively.

(A) dsp2, dsp2
(B) sp3, dsp2
(C) dsp2, sp3
(D) sp3, sp3

79) Which of the following order of acidic strength is not correct?

(A) $\text{CH}_3\text{COOH} > \text{CH}_3\text{CH}_2\text{COOH} > (\text{CH}_3)_2\text{CH-COOH}$
(B) $\text{CH}_3\text{CH}_2\text{CH-COOH} > \text{CH}_3\text{CH}_2\text{COOH} > \text{CH}_3\text{CH}_2\text{CH}_2\text{COOH}$

(C) $\text{H-COOH} > \text{CH}_3\text{COOH} > \text{C}_4\text{H}_6\text{COOH}$

(D) $\text{Cl}_3\text{C-COOH} > \text{Cl}_2\text{CH-COOH} > \text{ClCH}_2\text{COOH}$

80) What is the formula of Acrolein?

(A) $\text{CH}_2 = \text{CH} - \text{CONH}_2$
(B) $\text{CH}_2 = \text{CH} - \text{CN}$
(C) $\text{CH}_2 = \text{CH} - \text{COOH}$
(D) $\text{CH}_2 = \text{CH} - \text{CHO}$
81) A - The DNA fingerprint is the same for every cell, tissue and organ of a person.

R - DNA fingerprint is used for treatment of inherited disorders like Huntington's disease, Alzheimer's and Sickle cell anemia.

(A) A is wrong and R is correct
(B) A and R both are correct but R is not explanation of A
(C) A is correct and R is wrong
(D) A and R both are correct. R is explanation of A

82) Which part is not included in Cochlear duct?

(A) Tectorial membrane (B) Macula of Utricle
(C) Scala Media (D) Reissner’s membrane

83) Which is Gynandromorph type of animal?

(A) Drossophilla (B) Beetles
(C) Silk worms (D) All of the above

84) DNA polymerase enzyme is isolated from which bacteria?

(A) Agro bacterium (B) Thermus aquaticus
(C) Bacillus thurunogenesis (D) E.Coli

(Space for Rough Work)
85) Match the column I, II and III

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
<th>Column III</th>
</tr>
</thead>
<tbody>
<tr>
<td>P) Trichomonia</td>
<td>i) Herpes Simplex</td>
<td>x) Pain in lower abdomen</td>
</tr>
<tr>
<td>Q) Syphilis</td>
<td>ii) Neisseria</td>
<td>y) Inflammation and itching in and around vagina</td>
</tr>
<tr>
<td>R) Gonorrhoea</td>
<td>iii) Treponema</td>
<td>z) Patchy hair loss</td>
</tr>
<tr>
<td>S) Genital herpes</td>
<td>iv) Trichomonas</td>
<td>w) Feeling of uneasiness</td>
</tr>
<tr>
<td></td>
<td>Pallidium</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vaginalis</td>
<td></td>
</tr>
</tbody>
</table>

(A) (P - i - z) (Q - ii - y) (R - iv - w) (S - iii - x)
(B) (P - iv - y) (Q - i - z) (R - ii - x) (S - iii - w)
(C) (P - iv - x) (Q - i - w) (R - ii - y) (S - iii - z)
(D) (P - iv - y) (Q - iii - z) (R - ii - x) (S - i - w)

86) What is the height and weight of twelve weeks old human embryo?

(A) 32 cm, 650 gram
(B) 7.5 cm, 14 gram
(C) 42 cm, 1800 gram
(D) 7.5 cm, 650 gram
87) **Assertion A**: Restriction endonuclease recognize short palindromic sequence and cut at specific sites.

Reason - R: When a restriction endonuclease acts on Palindrome, it cleaves both the strands of DNA molecule.

(A) A is wrong and R is correct
(B) A and R are both correct but R is not explanation of A
(C) A is correct and R is wrong
(D) A and R are both correct. R is explanation of A.

88) Write proper option by matching column I, II and III.

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
<th>Column III</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Name)</td>
<td>(Enzyme)</td>
<td>(Function)</td>
</tr>
<tr>
<td>i)</td>
<td>Gastric Juice</td>
<td>P) Chymotrypsinogen</td>
</tr>
<tr>
<td>ii)</td>
<td>Intestinal Juice</td>
<td>Q) Ptylin</td>
</tr>
<tr>
<td>iii)</td>
<td>Saliva</td>
<td>R) Renin</td>
</tr>
<tr>
<td>iv)</td>
<td>Pancreatic juice</td>
<td>S) Erepsin</td>
</tr>
</tbody>
</table>

(A) (i - Q - A) (ii - P - C) (iii - R - B) (iv - S - D)
(B) √ (i - R - C) (ii - S - A) (iii - Q - D) (iv - P - B)
(C) (i - S - D) (ii - R - C) (iii - P - B) (iv - Q - A)
(D) (i - R - C) (ii - S - A) (iii - Q - B) (iv - P - D)

(Space for Rough Work)
89) Write the correct sequence of genetic diversity.

(A) Kingdom → Species → Chromosomes → Genes → Nucleotides

(B) Population → Species → Chromosomes → Genes → Nucleotides

(C) Species → Genes → Population → Chromosomes → Nucleotides

(D) Kingdom → Population → Species → Genes → Chromosome → Nucleotides

90) Match the column I and II and select the correct option.

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II (concentration of DDT in ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A) Zooto plankton</td>
<td>P) 0.003 ppm</td>
</tr>
<tr>
<td>B) Small fishes</td>
<td>Q) 2 ppm</td>
</tr>
<tr>
<td>C) Water</td>
<td>R) 25 ppm</td>
</tr>
<tr>
<td>D) Fish eating birds</td>
<td>S) 0.04 ppm</td>
</tr>
<tr>
<td>E) Big fishes</td>
<td>T) 0.5 ppm</td>
</tr>
</tbody>
</table>

(A) Q P S T R

(B) S T P Q R

(C) S T R Q P

(D) S T P R Q

(Space for Rough Work)
91) Which of the following disease shows the blockage of kidney tubules and causes severe back pain?
(A) Nephritis
(B) Kidney failure
(C) Uremia
(D) Renal calculi

92) During photorespiration which compounds are formed having 2C and 3C respectively in Peroxisome?
(A) Phosphoglycerate, Glycolate
(B) Glycine, Glycerate
(C) Serine, Glycine
(D) Glycolate, Glycine

93) During rainy season wooden doors and windows are not properly closed. Why?
(A) Imbibition
(B) Diffusion
(C) Osmosis
(D) Plasmolysis
94) Match the column I, II and III

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
<th>Column III</th>
</tr>
</thead>
<tbody>
<tr>
<td>A) Sickle Cell</td>
<td>i) Due to recessive PP genes</td>
<td>P) Arrangement of Valine in place of Glutamic acid</td>
</tr>
<tr>
<td>Anaemia</td>
<td></td>
<td>Q) Inborn error of metabolism</td>
</tr>
<tr>
<td>B) Phenyl Ketonuria</td>
<td>ii) Due to absence of homogentisic oxidase enzyme</td>
<td></td>
</tr>
<tr>
<td>C) Alkaptonuria</td>
<td>iii) Follows Mendelian Principles</td>
<td>R) Urine turns black when exposed to air</td>
</tr>
<tr>
<td>D) Thalassaemia</td>
<td>iv) Characters caused by homozygous recessive genes</td>
<td>S) The required haemoglobin is not generated in the blood</td>
</tr>
</tbody>
</table>

(A) \((A - \text{iii} - R) . (B - \text{i} - Q) . (C - \text{iv} - P) . (D - \text{ii} - S) \)
(B) \((A - \text{iv} - P) . (B - \text{i} - Q) . (C - \text{ii} - R) . (D - \text{iii} - S) \)
(C) \((A - \text{iv} - P) . (B - \text{iii} - R) . (C - \text{i} - S) . (D - \text{ii} - R) \)
(D) \((A - \text{ii} - S) . (B - \text{iii} - R) . (C - \text{i} - Q) . (D - \text{iv} - P) \)

95) Which of the following is the symptom of Ulcerative colitis?

(A) Eyes turn yellow
(B) Difficulty in swallowing
(C) Loss of appetite
(D) Watery stools containing blood and mucus

(Space for Rough Work)
96) Which one is not cranial bone?
 (A) Sphenoid (B) Zygomatic (C) Temporal (D) Frontal

97) \[4 \text{H}_2\text{O} \rightarrow 4\text{H}^+ + 4\text{OH}^- \]

 In this process which of the following play important role?
 (A) Chlorophyll (B) Light energy (C) Ca^{++}, Mn^{++}, Cl^- (D) All of the above

98) Which of the following is correct trend of succession in Hydroseric succession?
 (A) Rooted submerged → Phytoplankton → Reed swamp → Sedge meadow
 (B) Phytoplankton → Reed swamp → Rooted submerged → Sedge meadow
 (C) Phytoplankton → Sedge meadow → Reed swamp → Root submerged
 (D) Phytoplankton → Rooted submerged → Reed swamp → Sedge meadow

(Space for Rough Work)
99) On which surface of cell Donnan equilibrium occur?
 (A) Nuclear membrane (B) Tonoplast
 (C) Plasma membrane (D) Cell wall

100) Which type of gene regulate sex-determination in Spinach plant?
 (A) Multiple genes (B) Heterozygous genes
 (C) Single gene (D) Homozygous genes

101) When the respiratory substances are more than one then which respiratory substrates are not used?
 (A) Pure Protein (B) Lipid
 (C) Carbohydrate (D) (A) and (B) both

102) State the condition of muscle contraction in following diagram.

 (A) Resting potential (B) Contraction
 (C) Maximally contracted (D) None

(Space for Rough Work)
103) How many years are considered in one minute in Geological clock?

(A) 1,90,000 years (B) 1,87,500,000 years
(C) 3,25,000 years (D) 52000 years

104) Which structure is formed at the time of exchange of gamete nuclei in given animal during sexual reproduction.

(A) Cytoplasmic bridge (B) Cytoplasmic filaments
(C) Internal tubule (D) Plasmodesmata

105) Name the plant shows adventive embryonic cells.

(A) Lemon and Palms (B) Citrus and Mango
(C) Lemon and Maize (D) Sunflower and Mango

(Space for Rough Work)
106) During respiration

(A) PGAL is not produced during respiratory events

(B) 2 PGAL during glycolysis and 4 Pyruvic acid are produced in Kreb’s cycle

(C) 2 PGAL during glycolysis and 2 Pyruvic acid are produced in Kreb’s cycle

(D) 2 PGAL during glycolysis and none of the PGAL produced in Kreb’s cycle

107) Which of the following function is performed by collecting tubule of kidney?

(A) In the maintenance of pH and ionic balance of blood by the secretion of H+ and K+ ions

(B) Maintenance of pH of blood and removal of Na+ and K+ ions

(C) Absorption of glucose and ammonia from the blood

(D) None of above

108) A - Nerve fibre can become excited through touch, smell, pressure and chemical changes and there is a change in polarity.

R - It is called active potential.

(A) A is wrong and R is correct

(B) A and R both are correct but A is not correct explanation of R.

(C) A is correct and R is wrong

(D) A and R both are correct and A is correct explanation of R.

(Space for Rough Work)
109) Select proper option, by matching column I, II and III.

<table>
<thead>
<tr>
<th>Column I (Common Name)</th>
<th>Column II (Roman Numerical Designation)</th>
<th>Column III (Activation product)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P) Prthrombin</td>
<td>x) I</td>
<td>i) Convertin</td>
</tr>
<tr>
<td>Q) Proconvertin</td>
<td>y) V</td>
<td>ii) Fibrin</td>
</tr>
<tr>
<td>R) Fibrinogen</td>
<td>z) II</td>
<td>iii) Thrombin</td>
</tr>
<tr>
<td>S) Proaccelerin</td>
<td>w) VII</td>
<td>iv) Accelerin</td>
</tr>
</tbody>
</table>

\[
\text{(A) (P - z - iii) (Q - w - i) (R - x - ii) (S - y - iv)}
\]
\[
\text{(B) (P - w - ii) (Q - z - iii) (R - y - iv) (S - x - i)}
\]
\[
\text{(C) (P - z - iii) (Q - w - ii) (R - x - iv) (S - y - i)}
\]
\[
\text{(D) (P - z - iii) (Q - w - i) (R - y - ii) (S - x - iv)}
\]

110) What is “A” and “B” in given diagram?

(A) A = Lagging strand
 B = Movement of Helicase

(B) A = RNA Primer
 B = DNA Helicase

(C) A = Single strand Binding Protein
 B = DNA Helicase

(D) A = RNA Primer
 B = RNA Helicase

(Space for Rough Work)
111) In which field application of biotechnology occurs?
(A) Bio-medicine
(B) Agriculture
(C) Environmental field
(D) All of the above

112) _____ shows anti-allergic and anti-inflammatory effect.
(A) Noradrenaline
(B) Glucocorticoids
(C) Sexcorticoids
(D) Mineralocorticoids

113) During the process of decomposition in which stage complex organic matter convert into inorganic ions and salts by fungi?
(A) Mineralization
(B) Catabolism
(C) Fragmentation
(D) All of the above

114) How much amount of volume of air is in lungs FRC?
(A) 1600 ml to 2100 ml
(B) 2100 ml to 2500 ml
(C) 2500 ml to 3000 ml
(D) 1500 ml to 1600 ml
115) What indicated "A" in given figure?

![Diagram](Image)

(A) Hydrophobic bond
(B) Glycocidic bond

(C) Disulfide bond
(D) Peptide bond

116) What is the total diastolic time of ventricle in cardiac cycle?

(A) 0.10 second
(B) 0.40 second

(C) 0.50 second
(D) 0.30 second

117) Which amino acid determines by four genetic codes?

(A) Tyrosine (Tyr)
(B) Proline (Pro)

(C) Serine (Ser)
(D) Leucine (Leu)
118) Which is the inhibitory hormone of GH?
 (A) Testosterone
 (B) Parathormone
 (C) Somatostatin
 (D) Insulin

119) Complete and balanced the following reaction.

\[\text{Na}_2\text{HPO}_4 + X \rightarrow Y + \text{NaH}_2\text{PO}_4 \]

 (A) \(X = \text{H}_2\text{CO}_3, \ Y = \text{NaHCO}_3 \)
 (B) \(X = \text{H}_2\text{CO}_3, \ Y = \text{NaH}_2\text{CO}_3 \)
 (C) \(X = \text{NaHCO}_3, \ Y = \text{H}_2\text{CO}_3 \)
 (D) \(X = \text{NaHCO}_3, \ Y = \text{NaCl} \)

120) How many molecules of ATP and NADPH are required in formation of two molecules of glucose? How many Calvin cycles are required?

 (A) 24 ATP, 36 NADPH, 12 Calvin cycles
 (B) 18 ATP, 12 NADPH, 6 Calvin cycles
 (C) 36 ATP, 24 NADPH, 6 Calvin cycles
 (D) 36 ATP, 24 NADPH, 12 Calvin cycles

(Space for Rough Work)