7. SCIENCE (THEORY)

Code No. 086
Class-IX
Term - II (2010-11)
Sample Question Paper

TIME : 3 Hrs
MM : 80

<table>
<thead>
<tr>
<th>S.No.</th>
<th>CONTENT</th>
<th>Marks (Theory)</th>
<th>Marks MCQ</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Matter-Its nature & behaviour</td>
<td>15</td>
<td>-</td>
<td>15</td>
</tr>
<tr>
<td>2.</td>
<td>Organisation in the living world</td>
<td>16</td>
<td>6</td>
<td>22</td>
</tr>
<tr>
<td>3.</td>
<td>Motion, Force and work</td>
<td>22</td>
<td>10</td>
<td>32</td>
</tr>
<tr>
<td>4.</td>
<td>Our Environment</td>
<td>11</td>
<td>-</td>
<td>11</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>64</td>
<td>16</td>
<td>80</td>
</tr>
</tbody>
</table>

WEIGHTAGE TO FORM QUESTIONS (THEORY)

<table>
<thead>
<tr>
<th>S.No.</th>
<th>form of questions</th>
<th>Marks for each question</th>
<th>No. of questions</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>VSA</td>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>SA-I</td>
<td>2</td>
<td>9</td>
<td>18</td>
</tr>
<tr>
<td>3.</td>
<td>SA-II</td>
<td>3</td>
<td>9</td>
<td>27</td>
</tr>
<tr>
<td>4.</td>
<td>LA</td>
<td>5</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td></td>
<td>41</td>
<td>80</td>
</tr>
</tbody>
</table>

	MCQs			
	-		16	16
	TOTAL		**41**	**80**
Sample Question Paper
SCIENCE (THEORY)
Class-IX
Term - II (2010-11)

TIME: 3 Hrs

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Form of Questions</th>
<th>Unit</th>
<th>VSA(1)</th>
<th>SA-I(2)</th>
<th>SA-II(3)</th>
<th>LA(5)</th>
<th>MCQ(1)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Matter - Its nature and behaviour</td>
<td></td>
<td>–</td>
<td>2(1)</td>
<td>6(2)</td>
<td>–</td>
<td>–</td>
<td>15(5)</td>
</tr>
<tr>
<td></td>
<td>a) Atoms and Molecules</td>
<td></td>
<td>–</td>
<td>2(1)</td>
<td>–</td>
<td>5(1)</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b) Structure of atom</td>
<td></td>
<td>–</td>
<td>2(1)</td>
<td>3(1)</td>
<td>5(1)</td>
<td>–</td>
<td>22(12)</td>
</tr>
<tr>
<td>2.</td>
<td>Organisation in the living world</td>
<td></td>
<td>–</td>
<td>4(2)</td>
<td>3(1)</td>
<td>–</td>
<td>6(6)</td>
<td>32(19)</td>
</tr>
<tr>
<td></td>
<td>a) Diversity in living organisms</td>
<td></td>
<td>–</td>
<td>–</td>
<td>9(3)</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b) Why do we fall ill</td>
<td></td>
<td>–</td>
<td>2(1)</td>
<td>6(2)</td>
<td>–</td>
<td>4(4)</td>
<td>11(5)</td>
</tr>
<tr>
<td>3.</td>
<td>Motion, force & work</td>
<td></td>
<td>2(2)</td>
<td>–</td>
<td>3(1)</td>
<td>5(1)</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a) Floatation</td>
<td></td>
<td>–</td>
<td>4(2)</td>
<td>–</td>
<td>–</td>
<td>6(6)</td>
<td>32(19)</td>
</tr>
<tr>
<td></td>
<td>b) Work, energy and Power</td>
<td></td>
<td>–</td>
<td>2(1)</td>
<td>6(2)</td>
<td>–</td>
<td>4(4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c) Sound</td>
<td></td>
<td>–</td>
<td>2(1)</td>
<td>3(1)</td>
<td>5(1)</td>
<td>–</td>
<td>11(5)</td>
</tr>
<tr>
<td>4.</td>
<td>Our environment</td>
<td></td>
<td>1(1)</td>
<td>4(2)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a) Water, air, ozone layer</td>
<td></td>
<td>–</td>
<td>–</td>
<td>27(9)</td>
<td>15(3)</td>
<td>16(16)</td>
<td>80(41)</td>
</tr>
<tr>
<td></td>
<td>b) Mineral riches in soil, biogeochemical cycles</td>
<td></td>
<td>–</td>
<td>–</td>
<td>5(1)</td>
<td>–</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>in nature, green house effect</td>
<td></td>
<td>4(4)</td>
<td>18(9)</td>
<td>27(9)</td>
<td>15(3)</td>
<td>16(16)</td>
<td>80(41)</td>
</tr>
</tbody>
</table>

MM: 80
Sample Question Paper
SCIENCE (THEORY)
Class-IX
Term - II (2010-2011)

TIME : 3 Hrs
MM : 80

GENERAL INSTRUCTIONS

i) The question paper comprises of two sections, A and B. You are to attempt both the sections

ii) All questions are compulsory.

iii) There is no overall choice. However internal choice has been provided in all the three questions of five marks category. Only one option in such questions is to be attempted.

iv) All questions of section A and all question of section B are to be attempted separately.

v) Question numbers 1 to 4 in section A are one mark questions. These are to be attempted separately.

vi) Question numbers 5 to 13 are two mark questions, to be answered in about 30 words each.

vii) Question numbers 14 to 22 are three mark questions, to be answered in about 50 words each.

viii) Question numbers 23 to 25 are five mark questions, to be answered in about 70 words each.

ix) Question number 26 to 41 in section B are multiple choice questions based on practical skills. Each question is a one mark question. You are to choose our most appropriate response out of the four provided to you.
Sample Question Paper
SCIENCE (THEORY)
Class-IX
Term - II (2010-2011)

SECTION-A

1. State the relation between commercial unit of energy and joules.
2. How much work is done on a body of mass 1 kg whirling on a circular path of radius 5 m?
3. Name the man made component which is responsible for the depletion of ozone layer.
4. Mention one method by which living organisms influence the formation of soil.
5. Differentiate between transverse and longitudinal waves and give one example of each.
6. A body is floating on the surface of a liquid. With the help of a diagram show the two forces acting on it that are responsible for its floatation. State the relationship between these two forces in this case.
7. What is relative density?
 If an object is immersed wholly in a liquid causing upthrust equal to the weight of the body then what will be the relation between the relative densities of liquid and the object?
8. List two ways in which water is useful to living organisms.
9. a) Mention any two human activities which would be responsible for air pollution.
 b) How is Earth’s atmosphere different from that of Venus and mars?
10. The following data represents the distribution of electrons, protons and neutrons in atoms of four elements A, B, C, D.

<table>
<thead>
<tr>
<th>Element</th>
<th>Protons</th>
<th>Neutrons</th>
<th>Electrons</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>19</td>
<td>21</td>
<td>19</td>
</tr>
<tr>
<td>B</td>
<td>17</td>
<td>18</td>
<td>17</td>
</tr>
<tr>
<td>C</td>
<td>17</td>
<td>20</td>
<td>17</td>
</tr>
<tr>
<td>D</td>
<td>18</td>
<td>22</td>
<td>18</td>
</tr>
</tbody>
</table>

Answer the following questions:-
(i) Describe the electronic distribution in atom of element B.
(ii) Is elements B a metal or a non-metal? Why?
(iii) Which two elements form a pair of ISOTOPES?
(iv) Which two elements form a pair of ISOBARS?

11. a) Write chemical formula of Aluminium Sulphate.
 b) Give example each of a diatomic & tetraatomic element molecule.

12. What is symbiosis? Name a symbiotic life form. Mention the specific organisms which display the symbiotic relationship in this life form.

13. a) Identify two features possessed by all Chordates.
 b) In which class would you place any organism which has:
 i) a scaly exoskeleton and a bony endoskeleton
 ii) a scaly exoskeleton and lay eggs outside water.

14. A source of sound produces 20 compressions and 20 rarefactions in 0.2 seconds. The distance between a compression and the next (consecutive) rarefaction is 50 cm. Find the wavelength, frequency and time period of the wave.

15. (i) Define 1 joule of work.
 (ii) In a tug of war team A wins and team B loses. Which of these teams does
 a) Positive work b) Negative work
 Give reasons for your answer.

16. What is an Echo? State two conditions for echo to be heard. Bats cannot see still they catch their prey. Explain.

17. a) State the law of constant Proportion.
 b) Taking the example of water explain the law of Constant Proportion.
 c) Which postulate of Dalton’s Atomic Theory explains this law?

18. A flask contains 4.4g of CO₂ gas. Calculate
 a) How many moles of CO₂ gas does it contain?
 b) How many molecules of CO₂ gas are present in the sample.
 c) How many atoms of oxygen are present in the given sample.
 [Atomic mass of C=12u, O=16u]

19. a) It was diagnosed that Preeti suffers from Japanese encephalitis, which organ of Preeti’s body is affected?
 b) How are antibiotics effective in the treatment of some diseases?
 c) Will they help in curing Preeti’s disease? Why?

20. a) Discuss briefly the principle of immunization.
b) Mention any two diseases that can be prevented by immunization.

21. Discuss with the help of suitable examples three ways in which microorganisms can find entry into human body.

22. Pick the odd one out and justify your choice by giving reasons.
 i) Riceia, Marsilea, Marchantia & Funaria
 ii) Crocodile, Salamander, Sparrow and bat.

23. Explain ‘potential energy’ in your own words and give an example of it. State the SI unit of potential energy. Derive an expression for potential energy of an object of mass ‘m’ that has been raised to a height ‘h’ from the ground.

 A body of mass 20 kg is lifted up by 10 meters. Calculate its potential energy. If this body is allowed to fall, find its kinetic energy just before it touches the ground. (take \(g = 10 \text{m/s}^2 \))

 OR

Define ‘Power’ of a body.

State and define the SI unit of Power. Two children A and B both weighing 32 kg start climbing up a rope separately reach a height of 8 m. ‘A’ takes 15 s and ‘B’ takes 20 s to reach that level. Calculate the amount of work done by A and B. Which of the two has more power. Show by calculation. (\(g = 10 \text{m/s}^2 \))

24. a) Illustrate Rutherford’s experiment to explain the model of an atom.

 b) Atomic number of an element is 17. Identify the element, write its electronic configuration and mention its valency.

 OR

Illustrate postulates of Neils Bohr to explain model of an atom. Identify the element, write electronic configuration and number of neutrons present in the atom represented by \({}^2_7 \text{X} \).

25. With the help of a labelled diagram, show

 a) Nitrogen cycle in nature

 b) Describe briefly any two processes involved in the cycling of \(\text{N}_2 \) in the environment.

 OR

With the help of a labelled diagram show the cycling of carbon in nature. What are the two ways in which carbon-di-oxide is fixed in the environment.
SECTION - B

26. A student uses a spring balance, as shown, to measure the mass of a solid body. He/she finds the mass to be-

 ![Diagram of a spring balance]

 a) 100g b) 97g c) 92.5g d) 85g

27. Water meniscus in a graduated cylinder is of concave shape. While finding the volume, the correct reading will correspond to -
 a) upper end of meniscus
 b) lower end of meniscus
 c) the mid point of meniscus
 d) anywhere on the meniscus

(1)

28. During the experiment on measurement of loss in weight of solid in tap water and salty solution, the maximum loss in weight of the solid is observed, when it is-
 a) partially immersed in water
 b) partially immersed in salt solution
 c) completely immersed in water
 d) completely immersed in salt solution
29. A student notes down the weight of a solid in three situations as shown. From the given observations the volume of the solid is:

a) 60cm3

b) 55cm3

c) 15cm3

d) 10cm3

30. In the experiment for determining the velocity of propagation of a pulse in a slinky / string, we prefer a long slinky / string:

a) because pulse cannot be formed in a short slinky / string

b) because short slinky / string is cheap.

c) so that pulse may move through it easily.

d) so that time taken by pulse to move from one end of slinky / string to other is more.

31. While studying the laws of reflection of sound, the tube facing the clock is placed as shown. In order to hear the reflected sound, the second tube should be placed such that θ is equal to:

a) 40$^\circ$

b) 50$^\circ$

c) 60$^\circ$

d) 80$^\circ$
32. Four students A, B, C and D observed and compared the pressure exerted by three different faces of a metal cuboid of dimensions 15cm X 10cm X 5cm. They recorded their observations about the depressions observed by them in the sand by the different faces of the cuboid as follows.

i) ‘A’ records that the depression is minimum when the face of dimension 15cm X 10cm is in contact with the sand

ii) ‘B’ records that the depression is minimum when the face of dimension 15cm X 5cm is in contact with the sand

iii) ‘C’ records that the depression is minimum when the face of dimension 10cm X 5cm is in contact with the sand

iv) ‘D’ records that the depression is equal for all the faces.

The correct conclusion is drawn by the student.

a) A
b) B
c) C
d) D

33. To observe and compare the pressure exerted by the three faces of a cuboid on sand, the following apparatus is available in the laboratory

(i) iron cuboid of dimensions 12cm X 6cm X 3cm

(ii) aluminium cuboid of dimensions 12cm X 6cm X 3cm

(iii) coarse sand in a tray

(iv) very fine sand in a tray

The best choice would be -

a) iron cuboid and coarse sand.

b) aluminium cuboid and coarse sand.

c) iron cuboid and fine sand.

d) aluminium cuboid and fine sand.

34. While studying the reflection of sound, 3 students used different reflecting surfaces. The best result would be obtained by the student using the reflecting surface-

a) a thermocol sheet

b) a polished, plane metal sheet

c) a rough cardboard sheet

d) a cushioned chair

35. A pulse was created in a string/slinky of length 4m by a group of 4 students. They observed that it returned, after reflection, at the point of creation 6 times in 10 seconds and calculated the speed as follows-

<table>
<thead>
<tr>
<th>student</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>speed in m/s</td>
<td>0.4</td>
<td>2.4</td>
<td>4.8</td>
<td>9.6</td>
</tr>
</tbody>
</table>
36. Which of the following is a characteristic feature of ferns?
 (a) They have male and female cones
 (b) They have rhizoids
 (c) They have needle shaped leaves.
 (d) Their plant body is differentiated into root, stem and leaves.

37. Choose the option which includes the feature that helps the fish to change its direction.
 (a) Caudal fin and pelvic fin
 (b) Dorsal fin and anal fin
 (c) Dorsal fin only
 (d) Caudal fin only.

38. Pick the odd one out.
 (a) jointed legs
 (b) scales
 (c) Compound eyes
 (d) wings

39. Which of the following is not an aerial adaptation of a bird?
 (a) Presence of strong flight muscles.
 (b) Presence of vertebral column.
 (c) Streamlined body
 (d) Forelimbs modified into wings.

40. Choose the option that best describes the feature of spirogyra.
 (a) Multicellular, autotrophic, root like rhizoids
 (b) Cytoplasmic strands, autotrophic, presence of rhizome.
 (c) Presence of male cones, nonvascular, filaments
 (d) Filamentous, Presence of cytoplasmic strands, presence of pyrenoids

41. Which of the following characteristics does not belong to following plants?
 (a) Seeds are naked
 (b) Conducting tissue is well developed
 (c) Shows nodes and internodes
 (d) Shows the presence of root hairs.
1. kilowatt hour ½
 1 kilowatt hour = 3.6 \times 10^6 \text{joules} ½

2. Zero 1

3. CFC (chloro fluoro carbon) 1

4. Roots of big trees go into cracks, widen them and finally break the rocks/Lichens release some substances causing powdering of rock surface. 1

5. Transverse waves are the waves in which particles of the medium vibrate at right angles to the direction of propagation of wave. ½
 example : water waves/waves set up in a rope whose one end is fixed and the other is jerked or any other appropriate example. ½

 whereas,

 Longitudinal waves are those waves in which particles of the medium vibrate in the same direction as that of the wave. ½
 example :- Compressed spring or any other appropriate example ½

6. \[
 \begin{align*}
 \text{\text{F}}_1 &= \text{weight of the body} \\
 \text{\text{F}}_2 &= \text{buoyant force of the liquid}
 \end{align*}
 \]
 \(\text{F}_1 < \text{F}_2 \) 1

7. Relative density of a substance is the ratio of density of the substance to that of water/
 \[
 \text{Relative density} = \frac{\text{density of substance}}{\text{Density of water}}
 \]

 Relative densities will be the same 1

8. i) All cellular processes take place in water medium. The reactions that take place within our body in cells occur between substances that are dissolved in water. 1

 ii) Water is a very good solvent. Substances are also transported from one part of the body to the other in dissolved form. 1

9. (a) i) Increased use of vehicles run by fossil fuels increases the gaseous air pollutants ½
10. (b) In Earth’s atmosphere CO₂ is 0.03% and in Mars and Venus it is 95-97% 1

11. a) Aluminium sulphate
\[\text{Al}_3 \text{SO}_4 \rightarrow \text{Al}_2 (\text{SO}_4)_3 \] 1

b) Diatomic element molecule – O₂ / H₂ / N₂ ½
Tetraatomic element molecule – P₄ ½

12. Symbiosis refers to association between two organisms which benefit mutually from each other / Lichens / Algae and fungi ½ ½

13. a) Presence of notochord / dorsal nerve chord / paired gill pouches / have a bilaterally symmetrical body / are triploblastic / are coelomate. (any two) \[\frac{1}{2} \times \frac{1}{2} \]
b) i) Class pisces ½
ii) Class Reptilia ½

14. No. of waves = 20
Distance between a compression and the next rarefaction is half a wavelength
\[\lambda = 50 \text{ cm} \]
\[\lambda = 100 \text{ cm} \]

Time period, \(T = \frac{\text{time taken}}{\text{no. of waves}} \)
\[= \frac{0.2s}{20} \]
\[T = 0.01s \] 1

Frequency, \(\phi = \frac{1}{\text{time period}} \)
\[= \frac{1}{0.01} = 100 \text{ Hz} \] 1

15. i) 1 joule is the amount of work done when a force of 1 newton displaces a body by 1 meter along the line of action of force 1
16. Echo - sound heard after reflection from an obstacle.
 Conditions -
 a) time interval between the original sound and reflected sound must be at least 0.1 s
 b) minimum distance of the obstacle from the source of sound must be 17.2 m at 22°C. = 17-18 m at room temperature.
 * Bats produce ultrasonic waves. These signals are received by them after reflection from the prey and interpreted by their brain accordingly.

17. * In a pure chemical compound, the mass ratio of constituent elements remains constant irrespective of the source it is obtained from.
 * Example – H₂O
 mass ratio of H : O is 2 : 16 or 1 : 8
 i.e. whatever may be the source of water 9g of H₂O when decomposed gives 1g of hydrogen and 8g of oxygen
 * Law of conservation of atoms

18. 1 mole of CO₂ = 12 + 16 x 2 = 44g
 a) Number of moles of CO₂ = \(\frac{4.4 \text{ g}}{44 \text{ g mol}^{-1}} = 0.1 \text{ mol.} \)
 b) Number of molecules of CO₂ = 0.1 x 6.022 x 10²³
 = 6.022 x 10²³ molecules
 c) Number of atoms of oxygen = 2 x 0.1 x 6.022 x 10²³
 = 2 x 6.022 x 10²³ atoms
 = 1.204 x 10²⁴ atoms

19. a) Brain
 b) They block biochemical pathways. As a result of this the bacteria are unable to make cell walls and so they die.
 c) No, Japanese encephalitis is a viral disease

20. Our immune system responds against any microbe when it enters the body for the first time and remembers it specifically. The next time the same microbe tries to enter the body, the immune system recognizes and responds vigorously eliminating the infection.
b) Diphtheria/pertussis/mumps/tetanus/measles/polio (any two) \[\frac{1}{2} \cdot \frac{1}{2} \]

21. Through cuts and wounds (Tetanus)
Through contaminated food and water (cholera)
Through sexual contact (AIDS, Syphilis)
Through air (TB, Pneumonia)

Through direct skin contact (Ring worm) (any three) \[\frac{3}{2} \left(\frac{1}{2} + \frac{1}{2} \right) \]

22. i) Marsilea is the odd one out as it is a pteridophyte while the rest are bryophytes

ii) Salamander is the odd one out as it has three chambered heart while all the rest have four chambered heart \[\frac{1}{2}, \frac{1}{2}, \frac{1}{2} \]

23. ‘Energy possessed by an object by virtue of its position or configuration’ – to be explained in candidate’s own words 1
Example: - stretched string of bow/a stone lifted to a certain height or any other appropriate example ½
S.I. unit – joule ½
Derivation of the relation P.E. = mg\(h\)
(Correct steps to be written)
As the object falls, \[m = 20\text{kg} \quad g = 10\text{m/s}^2 \quad h = 10\text{m} \]
\[\therefore \quad \text{P.E.} = mg\(h\) = 20\text{kg} \times 10\text{m/s}^2 \times 10\text{m} \]
\[\text{P.E.} = 2000\text{J} \]
its P.E. gets converted to K.E.
kinetic energy just before it touches = 2000J 1

OR

* Power is rate of doing work/rate of transfer of energy 1
* S.I. unit of power is watt ½
* 1 watt is the power of an agent which does work at the rate of 1 joule per second/power of an agent when the rate of consumption of energy is 1 joule per second ½

For A:
\[W = mg\(h\) \]
\[\quad = 32\text{ kg} \times 10\text{ m/s}^2 \times 8\text{m} \]
\[W = 2560\text{ J} \]
1

Both have same mass and climb the same height
\[P_A = \frac{2560 \text{ J}}{15 \text{s}} = 170.7 \text{ W} \]
\[P_B = \frac{2560 \text{ J}}{20 \text{s}} = 128 \text{ W} \]

24. a) **Rutherford's scattering experiment**

He selected very thin gold foil to be bombarded with fast moving \(\alpha \)-particles - which were doubly positively charged 'He' ions.

The fast moving \(\alpha \)-particles have a considerable amount of K.E. to hit gold atoms

Observations

i) Most of the \(\alpha \)-particles passed straight through the foil.

ii) One out of 12,000 particles appeared to rebound.

Inference

i) There is a positive centre inside the atom called nucleus.

ii) The electrons revolve around the nucleus in well defined orbits.

iii) The size of the nucleus is very small as compared to the size of the atom.

b) Atomic number is 17

Element is chlorine

Electronic configuration - 2,8,7; valency - 1

\(\frac{1}{2}, \frac{1}{2} \)

OR

a) Bohr model of an atom

i) Only certain special orbits known as discrete orbits of electrons are allowed inside the atom.

ii) While revolving in discrete orbits the electrons do not radiate energy.

iii) These orbits or shells are called energy levels

![Diagram of Bohr model of an atom]

131
These orbits or shells are represented by the letters K,L,M,N........... or the number
\(n=1,2,3,4............... \)

25. a) Fig. 14.6 page 198 NCERT
Any four labelling
½ x 4
b) Fixing of nitrogen by N\textsubscript{2} fixing bacteria which are found in root nodules of legumes or
which are free living, ammonification by bacteria in the soil, conversion of ammonia to
nitrates or nitrites to nitrates by different type of bacteria. Nitrites to nitrogen in air by
different bacteria. (any two)
1,1

OR

a) fig 14.7 page, 199, NCERT book
Any four labellings
½ x 4
b) i) Conversion of CO\textsubscript{2} into glucose by green plants in the presence of sunlight during
photosynthesis
ii) Usage of carbonates dissolved in sea water by marine animals to make their shells
1,1

<table>
<thead>
<tr>
<th>SECTOR - B</th>
</tr>
</thead>
<tbody>
<tr>
<td>26. (c) 27. (b) 28. (d) 29. (d)</td>
</tr>
<tr>
<td>30. (d) 31. (b) 32. (a) 33. (c)</td>
</tr>
<tr>
<td>34. (b) 35. (c) 36. (d) 37. (d)</td>
</tr>
<tr>
<td>38. (b) 39. (b) 40. (d) 41. (a)</td>
</tr>
</tbody>
</table>