OBJECTIVES: The objective of this course is to fulfill the needs of engineers to understand applications of Numerical Analysis, Transform Calculus and Statistical techniques in order to acquire mathematical knowledge and to solving wide range of practical problems appearing in different sections of science and engineering. More precisely, the objectives are:

- To introduce effective mathematical tools for the Numerical Solutions algebraic and transcendental equations.
- To enable young technocrats to acquire mathematical knowledge to understand Laplace transformation, Inverse Laplace transformation and Fourier Transform which are used in various branches of engineering.
- To acquaint the student with mathematical tools available in Statistics needed in various field of science and engineering.

Textbooks/References:

RAJIV GANDHI PROUDYOGIKI VISHWAVIDYALAYA, BHOPAL

New Scheme Based On AICTE Flexible Curricula

Computer Science and Engineering, IV-Semester

CS402 Analysis Design of Algorithm

Algorithms, Designing algorithms, analyzing algorithms, asymptotic notations, heap and heap sort. Introduction to divide and conquer technique, analysis, design and comparison of various algorithms based on this technique, example binary search, merge sort, quick sort, strassen’s matrix multiplication.

Study of Greedy strategy, examples of greedy method like optimal merge patterns, Huffman coding, minimum spanning trees, knapsack problem, job sequencing with deadlines, single source shortest path algorithm

Concept of dynamic programming, problems based on this approach such as 0/1 knapsack, multistage graph, reliability design, Floyd-Warshall algorithm

Backtracking concept and its examples like 8 queen’s problem, Hamiltonian cycle, Graph coloring problem etc. Introduction to branch & bound method, examples of branch and bound method like traveling salesman problem etc. Meaning of lower bound theory and its use in solving algebraic problem, introduction to parallel algorithms.

Binary search trees, height balanced trees, 2-3 trees, B-trees, basic search and traversal techniques for trees and graphs (In order, preorder, postorder, DFS, BFS), NP-completeness.

References:
1. Coremen Thomas, Leiserson CE, Rivest RL; Introduction to Algorithms; PHI.
2. Horowitz & Sahani; Analysis & Design of Algorithm
3. Dasgupta; algorithms; TMH
4. Ullmann; Analysis & Design of Algorithm;
5. Michael T Goodrich, Robarto Tamassia, Algorithm Design, Wiely India

List of Experiments (expandable):
1. Write a program for Iterative and Recursive Binary Search.
2. Write a program for Merge Sort.
3. Write a program for Quick Sort.
4. Write a program for Strassen’s Matrix Multiplication.
5. Write a program for optimal merge patterns.
6. Write a program for Huffman coding.
7. Write a program for minimum spanning trees using Kruskal’s algorithm.
8. Write a program for minimum spanning trees using Prim’s algorithm.
9. Write a program for single sources shortest path algorithm.
10. Write a program for Floye-Warshal algorithm.
11. Write a program for traveling salesman problem.
12. Write a program for Hamiltonian cycle problem.
Rationale:
The purpose of this subject is to cover the underlying concepts and techniques used in Software Engineering & Project Management. Some of these techniques can be used in software design & its implementation.

Prerequisites:
The students should have at least one year of experience in programming a high-level language and databases. In addition, a familiarity with software development life cycle will be useful in studying this subject.

Unit I: The Software Product and Software Process

Unit II: Requirement Elicitation, Analysis, and Specification
Functional and Non-functional requirements, Requirement Sources and Elicitation Techniques, Analysis Modeling for Function-oriented and Object-oriented software development, Use case Modeling, System and Software Requirement Specifications, Requirement Validation, Traceability

Unit III: Software Design

Unit IV: Software Analysis and Testing

Unit V: Software Maintenance & Software Project Measurement

Practical and Lab work
Lab work should include a running case study problem for which different deliverable sat the end of each phase of a software development life cycle are to be developed. This will include modeling the requirements, architecture and detailed design. Subsequently the design models will be coded and tested. For modeling, tools like Rational Rose products. For coding and testing, IDE like Eclipse, Net Beans, and Visual Studio can be used.

References
5. Richard H. Thayer,”Software Engineering & Project Managements”, WileyIndia
RAJIV GANDHI PROUDYOGIKI VISHWAVIDYALAYA, BHOPAL

New Scheme Based On AICTE Flexible Curricula

Computer Science and Engineering, IV-Semester

CS404 Computer Org. & Architecture

Objectives: Students to be familiarize the basic principles of computer architecture, Design and Multi Processing, Types of data transfer, Concept of semi conductor memories which is useful for research work in field Computer System.

Basic Structure of Computer: Structure of Desktop Computers, CPU: General Register Organization-Memory Register, Instruction Register, Control Word, Stack Organization, Instruction Format, ALU, I/O System, bus,CPU and Memory Program Counter, Bus Structure, Register Transfer Language-Bus and Memory Transfer, addressing modes. Control Unit Organization: Basic Concept of Instruction, Instruction Types, Micro Instruction Formats, Fetch and Execution cycle, Hardwired control unit, Micro-programmed Control unit microprogram sequencer Control Memory, Sequencing and Execution of Micro Instruction.

Computer Arithmetic: Addition and Subtraction, Tools Compliment Representation, Signed Addition and Subtraction, Multiplication and division, Booths Algorithm, Division Operation, Floating Point Arithmetic Operation, design of Arithmetic unit

Memory Organization: Main memory-RAM, ROM, Secondary Memory –Magnetic Tape, Disk, Optical Storage, Cache Memory: Cache Structure and Design, Mapping Scheme, Replacement Algorithm, Improving Cache Performance, Virtual Memory, memory management hardware

Multiprocessors: Characteristics of Multiprocessor, Structure of Multiprocessor-Interprocessor Arbitration, Inter-Processor Communication and Synchronization. Memory in Multiprocessor System, Concept of Pipelining, Vector Processing, Array Processing, RISC And CISC, Study of Multicore Processor–Intel, AMD.

Reference Books:
Computer Org. & Architecture (List of Practicals)

1. Study of Multiplexer and Demultiplexer
2. Study of Half Adder and Subtractor
3. Study of Full Adder and Subtractor
4. WAP to add two 8 bit numbers and store the result at memory location 2000
5. WAP to multiply two 8 bit numbers stored at memory location 2000 and 2001 and stores the result at memory location 2000 and 2001.
6. WAP to add two 16-bit numbers. Store the result at memory address starting from 2000.
7. WAP which tests if any bit is '0' in a data byte specified at an address 2000. If it is so, 00 would be stored at address 2001 and if not so then FF should be stored at the same address.
8. Assume that 3 bytes of data are stored at consecutive memory addresses of the data memory starting at 2000. Write a program which loads register C with (2000), i.e. with data contained at memory address 2000, D with (2001), E with (2002) and A with (2001).
9. Sixteen bytes of data are specified at consecutive data-memory locations starting at 2000. Write a program which increments the value of all sixteen bytes by 01.
10. WAP to add t 10 bytes stored at memory location starting from 3000. Store the result at memory location 300A
RAJIV GANDHI PROUDYOGIKI VISHWAVIDYALAYA, BHOPAL

New Scheme Based On AICTE Flexible Curricula

Computer Science and Engineering, IV-Semester

CS405 Operating Systems

RATIONALE: The purpose of this subject is to cover the underlying concepts Operating System. This syllabus provides a comprehensive introduction of Operating System, Process Management, Memory Management, File Management and I/O management.

PREREQUISITE:

UNIT 1. Introduction to Operating Systems: Function, Evolution, Different Types, Desirable Characteristics and features of an O/S, Operating Systems Services: Types of Services, Different ways of providing these Services – Utility Programs, System Calls.

Memory Management: Different Memory Management Techniques – Partitioning, Swapping, Segmentation, Paging, Paged Segmentation, Comparison of these techniques, Techniques for supporting the execution of large programs: Overlay, Dynamic Linking and Loading, Virtual Memory – Concept, Implementation by Demand Paging etc.

TEXT BOOKS RECOMMENDED:

REFERENCE BOOKS:

List of Experiments

1. Write a program to implement FCFS CPU scheduling algorithm.
2. Write a program to implement SJF CPU scheduling algorithm.
3. Write a program to implement Priority CPU Scheduling algorithm.
4. Write a program to implement Round Robin CPU scheduling algorithm.
5. Write a program to compare various CPU Scheduling Algorithms over different Scheduling Criteria.
6. Write a program to implement classical inter process communication problem (producer consumer).
7. Write a program to implement classical inter process communication problem (Reader Writers).
8. Write a program to implement classical inter process communication problem (Dining_Philosophers).
9. Write a program to implement & Compare various page replacement algorithm.
10. Write a program to implement & Compare various Disk & Drum scheduling Algorithms
11. Write a program to implement Banker’s algorithms.
12. Write a program to implement Remote Procedure Call (RPC).
13. Write a Devices Drivers for any Device or peripheral.
Objective: To introduce and understand students to programming concepts and techniques using the Java language and programming environment, class, objects, also learn about lifetime, scope and the initialization mechanism of variables and improve the ability general problem solving abilities in programming. Be able to use the Java SDK environment to create, debug and run simple Java program.

Basic Java Features - C++ Vs JAVA, JAVA virtual machine, Constant & Variables, Data Types, Class, Methods, Objects, Strings and Arrays, Type Casting, Operators, Precedence relations, Control Statements, Exception Handling, File and Streams, Visibility, Constructors, Operator and Methods Overloading, Static Members, Inheritance: Polymorphism, Abstract methods and Classes

Advance Java Features - Multithreading: Thread States, Priorities and Thread Scheduling, Life Cycle of a Thread, Thread Synchronization, Creating and Executing Threads, Multithreading with GUI, Monitors and Monitor Locks. Networking: Manipulating URLs, Reading a file on a Web Server, Socket programming, Security and the Network, RMI, Networking, Accessing Databases with JDBC: Relational Database, SQL, MySQL, Oracle

Advance Web/Internet Programming (Overview): J2ME, J2EE, EJB, XML.

References:
1. E. Balaguruswamy, “Programming In Java”; TMH Publications
2. The Complete Reference: Herbert Schildt, TMH
3. Deitel & Deitel, ”JAVA, How to Program”; PHI, Pearson.
4. Cay Horstmann, Big JAVA, Wiley India.
List of Program:
1. Installation of J2SDK
2. Write a program to show Scope of Variables
3. Write a program to show Concept of CLASS in JAVA
4. Write a program to show Type Casting in JAVA
5. Write a program to show How Exception Handling is in JAVA
6. Write a Program to show Inheritance
7. Write a program to show Polymorphism
8. Write a program to show Access Specifiers (Public, Private, Protected) in JAVA
9. Write a program to show use and Advantages of CONSTRUCTOR
10. Write a program to show Interfacing between two classes
11. Write a program to Add a Class to a Package
12. Write a program to show Life Cycle of a Thread
13. Write a program to demonstrate AWT.
14. Write a program to Hide a Class
15. Write a Program to show Data Base Connectivity Using JAVA
16. Write a Program to show “HELLO JAVA ” in Explorer using Applet
17. Write a Program to show Connectivity using JDBC
18. Write a program to demonstrate multithreading using Java.
19. Write a program to demonstrate applet life cycle.
20. Write a program to demonstrate concept of servlet.
Programming Practices (b) (Dot Net Technologies)

Basic Features Of C# Fundamentals, Classes and Objects, Inheritance and Polymorphism, Operator Overloading, Structures. Advanced Features Of C# Interfaces, Arrays, Indexers and Collections; Strings and Regular Expressions, Handling Exceptions, Delegates and Events.

Installing ASP.NET framework, overview of the ASP .net framework, overview of CLR, class library, overview of ASP.net control, understanding HTML controls, study of standard controls, validations controls, rich controls. Windows Forms: All about windows form, MDI form, creating windows applications, adding controls to forms, handling Events, and using various Tolls.

Understanding and handling controls events, ADO.NET- Component object model, ODBC, OLEDB, and SQL connected mode, disconnected mode, dataset, data-reader Data base controls: Overview of data access data control, using grid view controls, using details view and frame view controls, ado .net data readers, SQL data source control, object data source control, site map data source.

References:
1. C# for Programmers by Harvey Deitel, Paul Deitel, Pearson Education
2. Balagurusamy; Programming in C#; TMH
3. Web Commerce Technology Handbook by Daniel Minoli, Emma Minoli , TMH
5. Alex Mackey, “Introduction.NET 4.5 “, Wiley India
6. ASP .Net Complete Reference by McDonald, TMH.
7. ADO .Net Complete Reference by Odey, TMH

List of Experiments/ program (Expandable):
1. Working with call backs and delegates in C#
2. Code access security with C#.
3. Creating a COM+ component with C#.
4. Creating a Windows Service with C#
5. Interacting with a Windows Service with C#
6. Using Reflection in C#
7. Sending Mail and SMTP Mail and C#
8. Perform String Manipulation with the String Builder and String Classes and C#:
9. Using the System .Net Web Client to Retrieve or Upload Data with C#
10. Reading and Writing XML Documents with the XML Text-Reader/-Writer Class and C#
12. Working with Forms using ASP .Net
13. Data Sources access through ADO.Net,
14. Working with Data readers , Transactions
15. Creating Web Application.
Programming Practices (c) Python

Introduction: Basic syntax, Literal Constants, Numbers, Variable and Basic data types, String, Escape Sequences, Operators and Expressions, Evaluation Order, Indentation, Input Output, Functions, Comments.

Data Structure: List, Tuples, Dictionary and Sets.

Control Flow: Conditional Statements - If, If-else, Nested If-else. Iterative Statement - For, While, Nested Loops. Control statements - Break, Continue, Pass.

Object oriented programming: Class and Object, Attributes, Methods, Scopes and Namespaces, Inheritance, Overloading, Overriding, Data hiding.

Exception: Exception Handling, Except clause, Try finally clause, User Defined Exceptions.

Modules and Packages

Standard Libraries: File I/O, Sys, logging, Regular expression, Date and Time, Network programming, multi-processing and multi-threading.

References

- Timothy A. Budd: Exploring python, McGraw-Hill Education.
- R.Nageshwar Rao ,”Python Programming” ,Wiley India
- Think Python: Allen B. Downey, O'Reilly Media, Inc.
MATLAB: An Overview, Brief history of MATLAB, About MATLAB, Installation of MATLAB, Help browser, Arranging the desktop, Basic functions of Matlab, Mostly used symbols in MATLAB, debugging in Matlab; Building MATLAB expressions: MATLAB datatype, command handling, MATLAB basics.

MATLAB Vector and Matrix: Scalar and vector, elementary features in a vector array, matrices, eigen values and eigen vectors, matrix operations, matrix operators, creating matrix arrangement, indexing array value, other operations, mathematical operations on array, array types

Graphics in MATLAB: 2D plots, parametric plots, contour lines and implicit plots, field plots, multiple graphics display function, 3D plots, multivariate data, data analysis.

MATLAB programming introduction to M-files, MATLAB editors, M files, scripts, functions, MATLAB error and correction, MATLAB debugger; Digital Image Processing with MATLAB (Image Processing).

References:

2. Amos Gilat ,” An Introduction with Applications ,4ed “ , wiley India