Exercise 3.1

1. Write all the factors of the following numbers:
 (A) 24
 (B) 15
 (C) 21
 (D) 27
 (E) 12
 (F) 20
 (G) 18
 (H) 23
 (I) 36

Solution:

(A) We can write,
 \[24 = 1 \times 24\]
 \[24 = 2 \times 12\]
 \[24 = 3 \times 8\]
 \[24 = 4 \times 6\]
 \[24 = 6 \times 4\]
 \[\therefore \text{Factors of } 24 = 1, 2, 3, 4, 6, 12, 24\]

(B) We can write,
 \[15 = 1 \times 15\]
 \[15 = 3 \times 5\]
 \[\therefore \text{Factors of } 15 = 1, 3, 5, 15\]

(C) We can write,
 \[21 = 1 \times 21\]
 \[21 = 3 \times 7\]
21 = 7 \times 3
\therefore \text{Factors of } 21 = 1, 3, 7, 21

(D) We can write,
27 = 1 \times 27
27 = 3 \times 9
27 = 9 \times 3
\therefore \text{Factors of } 27 = 1, 3, 9, 27

(E) We can write,
12 = 1 \times 12
12 = 2 \times 6
12 = 3 \times 4
12 = 4 \times 3
\therefore \text{Factors of } 12 = 1, 2, 3, 4, 6, 12

(F) We can write,
20 = 1 \times 20
20 = 2 \times 10
20 = 4 \times 5
20 = 5 \times 4
\therefore \text{Factors of } 20 = 1, 2, 4, 5, 10, 20

(G) We can write,
18 = 1 \times 18
18 = 2 \times 9
18 = 3 \times 6
\therefore \text{Factors of } 18 = 1, 2, 3, 6, 9, 18

(H) We can write, 23 = 1 \times 23
\therefore \text{Factors of } 23 = 1, 23

(I) We can write, 36 = 1 \times 36
36 = 2 \times 18
36 = 3 \times 12
36 = 4 \times 9
36 = 6 \times 6
\therefore \text{Factors of 36} = 1, 2, 3, 4, 6, 9, 12, 18, 36

2. Write first five multiples of:
(A) 5
(B) 8
(C) 9

Solution:
(A) \quad 5 \times 1 = 5, 5 \times 2 = 10, 5 \times 3 = 15, 5 \times 4 = 20, 5 \times 5 = 25
\therefore \text{First five multiples of 5 are 5, 10, 15, 20, 25.}
(B) \quad 8 \times 1 = 8, 8 \times 2 = 16, 8 \times 3 = 24, 8 \times 4 = 32, 8 \times 5 = 40
\therefore \text{First five multiples of 8 are 8, 16, 24, 32, 40}
(C) \quad 9 \times 1 = 9, 9 \times 2 = 18, 9 \times 3 = 27, 9 \times 4 = 36, 9 \times 5 = 45
\therefore \text{First five multiples of 9 are 9, 18, 27, 36, 45.}

3. Match the items in column 1 with the items in column 2:

<table>
<thead>
<tr>
<th>Column 1</th>
<th>Column 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) 35</td>
<td>(A) Multiple of 8</td>
</tr>
<tr>
<td>(ii) 15</td>
<td>(B) Multiple of 7</td>
</tr>
<tr>
<td>(iii) 16</td>
<td>(C) Multiple of 70</td>
</tr>
<tr>
<td>(iv) 20</td>
<td>(D) Factor of 30</td>
</tr>
<tr>
<td>(v) 25</td>
<td>(F) Factor of 20</td>
</tr>
</tbody>
</table>

Solution:
(i) \rightarrow (b), (ii) \rightarrow (d), (iii) \rightarrow (a), (iv) \rightarrow (f), (v) \rightarrow (e)
(i) 35 = 5 \times 7
(ii) 15 = \frac{30}{2}
(iii) 16 = 8 \times 2
(iv) 20 = 20 \times 1
(v) 25 = \frac{50}{2}
4. Find all the multiples of 9 up to 100.

Solution:
Multiples of 9 up to 100 are: 9, 18, 27, 36, 45, 54, 63, 72, 81, 90, 99.

Exercise 3.2

1. What is the sum of any two
 (A) Odd numbers?
 (B) Even numbers?

Solution:
(A) The sum of any two odd numbers is an even number.
 Example: $1 + 3 = 4$, $3 + 5 = 8$
(B) The sum of any two even numbers is also an even number.
 Example: $2 + 4 = 6$, $6 + 8 = 14$

2. State whether the following statements are True or False:
 (A) The sum of three odd numbers is even.
 (B) The sum of two odd numbers and one even number is even.
 (C) The product of three odd numbers is odd.
 (D) If an even number is divided by 2, the quotient is always odd.
 (E) All prime numbers are odd.
 (F) Prime numbers do not have any factors.
 (G) Sum of two prime numbers is always even.
 (H) 2 is the only even prime number.
 (I) All even numbers are composite numbers.
 (J) The product of two even numbers is always even.

Solution:
(A) False
 For example, $1+3+5=9$, which is an odd number.
(B) True
 For example, $1+3+4=8$, which is an even number.
(C) True
 For example, $1 \times 3 \times 5 = 15$, which is an odd number.
(D) False
For example, $\frac{10}{2} = 5, \frac{12}{2} = 6$
We can see that, both even and odd number appears as quotient.

(E) False
For example, 2 is an even prime number.

(F) False
Prime numbers have 1 and number itself as factors.

(G) False
Sum of two prime numbers can be even or odd both.
For example, $2+5=7, 5+7=12$

(H) True
The only even prime number is 2.

(I) False
Composite numbers have at least three factors whereas prime numbers have only two factors, 1 and the number itself.

(J) True
The product of two even numbers is always even because it has 2 as a common factor.

3. The numbers 13 and 31 are prime numbers. Both these numbers have same digits 1 and 3. Find such pairs of prime numbers up to 100.

Solution:
Given, prime numbers like 13 and 31
So,
17 and 71;
37 and 73;
79 and 97 are three pairs.

4. Write down separately the prime and composite numbers less than 20.

Solution:
Prime numbers are those numbers which have only two factor 1 and the number itself.
Prime numbers: 2, 3, 5, 7, 11, 13, 17, 19
Composite numbers are those numbers which have at least three factors.

Composite numbers: 4, 6, 8, 9, 10, 12, 14, 15, 16, 18

5. What is the greatest prime number between 1 and 10?

 Solution:
 The greatest prime number between 1 and 10 is ‘7’.

6. Express the following as the sum of two odd primes.

 (A) 44
 (B) 36
 (C) 24
 (D) 18

 Solution:
 (A) $44 = 3 + 41$
 (B) $36 = 31 + 5$
 (C) $24 = 19 + 5$
 (D) $18 = 13 + 5$

7. Give three pairs of prime numbers whose difference is 2.

 [Remark: Two prime numbers whose difference is 2 are called twin primes].

 Solution:
 Following are the three pairs of twin primes:
 - 3 and 5;
 - 5 and 7;
 - 11 and 13

8. Which of the following numbers are prime?

 (A) 23
 (B) 51
 (C) 37
 (D) 26

 Solution:
 (A) 23 and (C) 37 are prime numbers.
9. Write seven consecutive composite numbers less than 100 so that there is no prime number between them.

Solution:

Seven consecutive composite numbers: 90, 91, 92, 93, 94, 95, 96

10. Express each of the following numbers as the sum of three odd primes:

(A) 21
(B) 31
(C) 53
(D) 61

Solution:

(A) \(21 = 3 + 7 + 11\)
(B) \(31 = 3 + 11 + 17\)
(C) \(53 = 13 + 17 + 23\)
(D) \(61 = 19 + 29 + 13\)

11. Write five pairs of prime numbers less than 20 whose sum is divisible by 5. (Hint: \(3 + 7 = 10\))

Solution:

2 + 3 = 5;
7 + 13 = 20;
3 + 17 = 20;
2 + 13 = 15;
5 + 5 = 10

12. Fill in the blanks:

(A) A number which has only two factors is called a ______.
(B) A number which has more than two factors is called a ______.
(C) 1 is neither ______ nor ______.
(D) The smallest prime number is ______.
(E) The smallest composite number is ______.

Solution:

(A) Prime number
Prime number has only two factors 1 and the number itself.

(B) Composite number
Composite number has more than two factors.

(C) Prime number and composite number

(D) The smallest prime number is 2.

(E) Composite numbers have more than two factors. The smallest composite number is 4.

Exercise 3.3

1. Using divisibility test, determine which of the following numbers are divisible by 2; by 3; by 5; by 6; by 8; by 9; by 10; by 11 (say, yes or no):

<table>
<thead>
<tr>
<th>Number</th>
<th>Divisible by</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 3 4 5 6 8 9 10 11</td>
</tr>
<tr>
<td>128</td>
<td>Yes No Yes No No Yes No No</td>
</tr>
<tr>
<td>990</td>
<td>Yes No Yes No No Yes No No</td>
</tr>
<tr>
<td>1586</td>
<td>Yes No Yes No No Yes No No</td>
</tr>
<tr>
<td>275</td>
<td>Yes No Yes No No Yes No No</td>
</tr>
<tr>
<td>6686</td>
<td>Yes No Yes No No Yes No No</td>
</tr>
<tr>
<td>639210</td>
<td>Yes No Yes No No Yes No No</td>
</tr>
<tr>
<td>429714</td>
<td>Yes No Yes No No Yes No No</td>
</tr>
<tr>
<td>2856</td>
<td>Yes No Yes No No Yes No No</td>
</tr>
<tr>
<td>3060</td>
<td>Yes No Yes No No Yes No No</td>
</tr>
<tr>
<td>406839</td>
<td>Yes No Yes No No Yes No No</td>
</tr>
</tbody>
</table>

Solution:

<table>
<thead>
<tr>
<th>Number</th>
<th>Divisible by</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 3 4 5 6 8 9 10 11</td>
</tr>
<tr>
<td>128</td>
<td>Yes No Yes No No Yes No No</td>
</tr>
<tr>
<td>990</td>
<td>Yes No Yes No No Yes No No</td>
</tr>
<tr>
<td>1586</td>
<td>Yes No Yes No No Yes No No</td>
</tr>
<tr>
<td>275</td>
<td>Yes No Yes No No Yes No No</td>
</tr>
<tr>
<td>6686</td>
<td>Yes No Yes No No Yes No No</td>
</tr>
<tr>
<td>639210</td>
<td>Yes No Yes No No Yes No No</td>
</tr>
</tbody>
</table>
2. Using divisibility tests, determine which of the following numbers are divisible by 4 and by 8:

(A) 572
→ Divisible by 4 as its last two digits are divisible by 4.
→ Not divisible by 8 as its last three digits are not divisible by 8.

(B) 726352
→ Divisible by 4 as its last two digits are divisible by 4.
→ Divisible by 8 as its last three digits are divisible by 8.

(C) 5500
→ Divisible by 4 as its last two digits are divisible by 4.
→ Not divisible by 8 as its last three digits are not divisible by 8.

(D) 6000
→ Divisible by 4 as its last two digits are 0.
→ Divisible by 8 as its last three digits are 0.

(E) 12159
→ Not divisible by 4 and 8 as it is an odd number.

(F) 14560
→ Divisible by 4 as its last two digits are 4.
→ Divisible by 8 as its last three digits are 8.

(G) 21084
→ Divisible by 4 as its last two digits are 4.
→ Not divisible by 8 as its last three digits are not divisible by 8.
Practice more on Playing With Numbers

<table>
<thead>
<tr>
<th>Class- VI-CBSE-Mathematics</th>
<th>Playing With Numbers</th>
</tr>
</thead>
</table>

| (H) 31795072 | → Divisible by 4 as its last two digits are divisible by 4. |
| → Divisible by 8 as its last three digits are divisible by 8. |

| (I) 1700 | → Divisible by 4 as its last two digits are 0. |
| → Not divisible by 8 as its last three digits are not divisible by 8. |

| (J) 5500 | → Not divisible by 4 as its last two digits are not divisible by 4. |
| → Not divisible by 8 as its last three digits are not divisible by 8. |

3. Using divisibility tests, determine which of the following numbers are divisible by 6:

- (A) 297144
- (B) 1258
- (C) 4335
- (D) 61233
- (E) 901352
- (F) 438750
- (G) 1790184
- (H) 12583
- (I) 639210
- (J) 17852

Solution:

4. Using divisibility tests, determine which of the following numbers are divisible by 11:

| (A) 5445 | → Sum of the digits at odd places = 4 + 5 = 9 |
| → Sum of the digits at even places = 4 + 5 = 9 |

| (B) 10824 |
| (C) 7138965 |
| (D) 70169308 |
| (E) 10000001 |
| (F) 901153 |

Solution:
Since the difference is 0, therefore, the number is divisible by 11.

(B) 10824

→ Sum of the digits at odd places = 4 + 8 + 1 = 13

→ Sum of the digits at even places = 2 + 0 = 2

→ Difference of both sums = 13 − 2 = 11

Since the difference is 11, therefore, the number is divisible by 11.

(C) 7138965

→ Sum of the digits at odd places = 5 + 9 + 3 + 7 = 24

→ Sum of the digits at even places = 6 + 8 + 1 = 15

→ Difference of both sums = 24 − 15 = 9

Since the difference is neither 0 nor 11, therefore, the number is not divisible by 11.

(D) 70169308

→ Sum of the digits at odd places = 8 + 3 + 6 + 0 = 17

→ Sum of the digits at even places = 0 + 9 + 1 + 7 = 17

→ Difference of both sums = 17 − 17 = 0

Since the difference is 0, therefore, the number is divisible by 11.

(E) 10000001

→ Sum of the digits at odd places = 1 + 0 + 0 + 0 = 1

→ Sum of the digits at even places = 0 + 0 + 0 + 1 = 1

→ Difference of both sums = 1 − 1 = 0

Since the difference is 0, therefore, the number is divisible by 11.

(F) 901153

→ Sum of the digits at odd places = 3 + 1 + 0 = 4

→ Sum of the digits at even places = 5 + 1 + 9 = 15

→ Difference of both sums = 15 − 4 = 11

Since the difference is 11, therefore, the number is divisible by 11.

(A) 297144

→ Divisible by 2 as its units place is an even number.

→ Divisible by 3 as sum of its digits (=27) is divisible by 3.

Since the number is divisible by both 2 and 3, therefore, it is also divisible by 6.

(B) 1258

→ Divisible by 2 as its units place is an even number.

→ Not divisible by 3 as sum of its digits (=16) is not divisible by 3.

Since the number is not divisible by both 2 and 3, therefore, it is not divisible by 6.
(C) 4335 → Not divisible by 2 as its units place is not an even number.
→ Divisible by 3 as sum of its digits (=15) is divisible by 3.

Since the number is not divisible by both 2 and 3, therefore, it is not divisible by 6.

(D) 61233 → Not divisible by 2 as its units place is not an even number.
→ Divisible by 3 as sum of its digits (=15) is divisible by 3.

Since the number is not divisible by both 2 and 3, therefore, it is also divisible by 6.

(E) 901352 → Divisible by 2 as its units place is an even number.
→ Not divisible by 3 as sum of its digits (=20) is not divisible by 3.

Since the number is not divisible by both 2 and 3, therefore, it is not divisible by 6.

(F) 438750 → Divisible by 2 as its units place is an even number.
→ Divisible by 3 as sum of its digits (=27) is not divisible by 3.

Since the number is divisible by both 2 and 3, therefore, it is divisible by 6.

(G) 1790184 → Divisible by 2 as its units place is an even number.
→ Divisible by 3 as sum of its digits (=30) is not divisible by 3.

Since the number is divisible by both 2 and 3, therefore, it is divisible by 6.

(H) 12583 → Not divisible by 2 as its units place is not an even number.
→ Not divisible by 3 as sum of its digits (=19) is not divisible by 3.

Since the number is not divisible by both 2 and 3, therefore, it is not divisible by 6.

(I) 639210 → Divisible by 2 as its units place is an even number.
→ Divisible by 3 as sum of its digits (=21) is not divisible by 3.

Since the number is divisible by both 2 and 3, therefore, it is divisible by 6.

(J) 17852 → Divisible by 2 as its units place is an even number.
→ Not divisible by 3 as sum of its digits (=23) is not divisible by 3.

Since the number is not divisible by both 2 and 3, therefore, it is not divisible by 6.

5. Write the smallest digit and the greatest digit in the blank space of each of the following numbers so that the number formed is divisible by 3:

(A) 6724
(B) 4765__2
Solution:

(A) We know that a number is divisible by 3 if the sum of all digits is divisible by 3.

<table>
<thead>
<tr>
<th>Therefore,</th>
<th>Smallest digit: 2</th>
<th>(\rightarrow)</th>
<th>26724 = 2 + 6 + 7 + 2 + 4 = 21</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Largest digit: 8</td>
<td>(\rightarrow)</td>
<td>86724 = 8 + 6 + 7 + 2 + 4 = 27</td>
</tr>
</tbody>
</table>

(B) We know that a number is divisible by 3 if the sum of all digits is divisible by 3.

<table>
<thead>
<tr>
<th>Therefore,</th>
<th>Smallest digit: 0</th>
<th>(\rightarrow)</th>
<th>476502 = 4 + 7 + 6 + 5 + 0 + 2 = 24</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Largest digit: 9</td>
<td>(\rightarrow)</td>
<td>476592 = 4 + 7 + 6 + 5 + 0 + 2 = 33</td>
</tr>
</tbody>
</table>

6. Write the smallest digit and the largest digit in the blanks space of each of the following numbers so that the number formed is divisible by 11:

(A) 92 _ 389
(B) 8 _ 9484

Solution:

(A) We know that a number is divisible by 11 if the difference of the sum of the digits at odd places and that of even places should be either 0 or 11.

<table>
<thead>
<tr>
<th>Therefore,</th>
<th>92_389</th>
<th>(\rightarrow)</th>
<th>Odd places = 9 + 8 + 8 = 25</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Even places = 2 + 3 + 9 = 14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Difference = 25 − 14 = 11</td>
</tr>
</tbody>
</table>

(B) We know that a number is divisible by 11 if the difference of the sum of the digits at odd places and that of even places should be either 0 or 11.

<table>
<thead>
<tr>
<th>Therefore,</th>
<th>869484</th>
<th>(\rightarrow)</th>
<th>Odd places = 8 + 9 + 8 = 25</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Even places = 6 + 4 + 4 = 14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Difference = 25 − 14 = 11</td>
</tr>
</tbody>
</table>

Exercise 3.4

1. Find the common factors of:

(A) 20 and 28
(B) 15 and 25
(C) 35 and 50
(D) 56 and 120
Solution:

(A) Factors of 20 = 1, 2, 4, 5, 10, 20
Factors of 28 = 1, 2, 4, 7, 14, 28
Common factors = 1, 2, 4

(B) Factors of 15 = 1, 3, 5, 15
Factors of 25 = 1, 5, 25
Common factors = 1, 5

(C) Factors of 35 = 1, 5, 7, 35
Factors of 50 = 1, 2, 5, 10, 25, 50
Common factors = 1, 5

(D) Factors of 56 = 1, 2, 4, 7, 8, 14, 28, 56
Factors of 120 = 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60, 120
Common factors = 1, 2, 4, 8

2. Find the common factors of:

(A) 4, 8 and 12

Solution:

(A) 4, 8, 12
Factors of 4 = 1, 2, 4
Factors of 8 = 1, 2, 4, 8
Factors of 12 = 1, 2, 3, 4, 6, 12
Common factors = 1, 2, 4

(B) 5, 15 and 25

Solution:

(B) 5, 15, and 25
Factors of 5 = 1, 5
Factors of 15 = 1, 3, 5, 15
Factors of 25 = 1, 5, 25
Common factors = 1, 5

3. Find first three common multiples of:

(A) 6 and 8
(B) 12 and 18

Solution:

(A) 6 and 8

Multiple of 6 = 6, 12, 18, 24, 30
Multiple of 8 = 8, 16, 24, 32
3 common multiples = 24, 48, 72

(B) 12 and 18

Multiples of 12 = 12, 24, 36, 78
Multiples of 18 = 18, 36, 54, 72
3 common multiples = 36, 72, 108

4. Write all the numbers less than 100 which are common multiples of 3 and 4.

Solution:

Multiples of 3 = 3, 6, 9, 12, 15 ...
Multiples of 4 = 4, 8, 12, 16, 20 ...
Common multiples = 12, 24, 36, 48, 60, 72, 84, 96

5. Which of the following numbers are co-prime?

(A) 18 and 35
(B) 15 and 37
(C) 30 and 415
(D) 17 and 68
(E) 216 and 215
(F) 81 and 16

Solution:

(A) Factors of 18 = 1, 2, 3, 6, 9, 18
Factors of 35 = 1, 5, 7, 35
Common factor = 1
Therefore, the given two numbers are co-prime

(B) Factors of 15 = 1, 3, 5, 15
Factors of 37 = 1, 37
Common factors = 1
Therefore, the given two numbers are co-prime.

(C) Factors of 30 = 1,2,3,5,6,10,15,30
Factors of 415 = 1,5,83,415
Common factors = 1,5
As these numbers have a common factor other than 1, the given two numbers are not co-prime.

(D) Factors of 17 = 1,17
Factors of 68 = 1,2,4,17,34,68
Common factors = 1,17
As these numbers have a common factor other than 1, the given two numbers are not co-prime.

(E) Factors of 216 = 1,2,3,4,6,8,9,12,18,24,27,36,54,72,108,216
Factors of 215 = 1,5,43,215
Common factors = 1
Therefore, the given two numbers are co-prime.

(F) Factors of 81 = 1,3,9,27,81
Factors of 16 = 1,2,4,8,16
Common factors = 1
Therefore, the given two numbers are co-prime.

6. A number is divisible by both 5 and 12 By which other number will that number be always divisible?

Solution:
Factors of 5 = 1,5
Factors of 12 = 1,2,3,4,6,12
As the common factor of these numbers is 1, the given two numbers are co-prime and the number will also be divisible by their product, i.e. 60, and the factors of 60, i.e., 1,2,3,4,5,6,10,12,15,20,30,60.

7. A number is divisible by 12 By what other numbers will that number be divisible?

Ans: Since the number is divisible by 12, it will also be divisible by its factors i.e., 1, 2, 3, 4, 6, 12. Clearly, 1, 2, 3, 4, and 6 are numbers other than 12 by which this number is also divisible.
Exercise 3.5

1. Which of the following statements are true?

(A) If a number is divisible by 3, it must be divisible by 9.
(B) If a number is divisible by 9, it must be divisible by 3.
(C) If a number is divisible by 18, it must be divisible by both 3 and 6.
(D) If a number is divisible by 9 and 10 both, then it must be divisible by 90.
(E) If two numbers are co-primes, at least one of them must be prime.
(F) All numbers which are divisible by 4 must also be divisible by 8.
(G) All numbers which are divisible by 8 must also be divisible by 4.
(H) If a number is exactly divides two numbers separately, it must exactly divide their sum.

Solution:

Statements (B), (C), (D), (G) and (H) are true.

(A) A number is divisible by 3 if the sum of digits is divisible by 3 but a number is divisible by 9 if the sum of digits is divisible by 9.

(B) If a number is divisible by 9, it must be divisible by 3 because 9 has 3 as a factor.

(C) If a number is divisible by 18, it must be divisible by both 3 and 6, because 18 has 3, 6 as factors.

(D) If a number is divisible by 9 and 10 both, then it must be divisible by 90.

(E) A set of integers can also be called coprime, if its elements share no common positive factor except 1. So, it is not necessary that at least one of them must be prime.

(F) Divisibility criteria of 4 is that last two digits should be divisible by 4 whereas divisibility criteria of 8 is that last three digit must be divisible by 8.

(G) All numbers which are divisible by 8 must also be divisible by 4, because 8 has 4 as a factor.

(H) If a number is exactly divides two numbers separately, it must exactly divide their sum.

We can take common from their sum.
(I) If a number is exactly divides two numbers separately, it must exactly divide their sum.

We can take common from their sum. But converse is not true.

2. Here are two different factor trees for 60. Write the missing numbers.

(A)

(B)

Solution:

(A)

(B)

3. Which factors are not included in the prime factorization of a composite number?

Solution:

1 is the factor which is not included in the prime factorization of a composite number.

4. Write the greatest 4-digit number and express it in terms of its prime factors.

Solution:

The greatest 4-digit number = 9999
5. Write the smallest 5-digit number and express it in terms of its prime factors.

Solution:
The smallest five-digit number is 10000.

$$10000 = 2 \times 2 \times 2 \times 2 \times 5 \times 5 \times 5 \times 5.$$

6. Find all the prime factors of 1729 and arrange them in ascending order. Now state the relation, if any, between two consecutive prime factors.

Solution:
Prime factors of 1729 are $7 \times 13 \times 19$.

The difference of two consecutive prime factors is 6.

7. The product of three consecutive numbers is always divisible by 6. Verify this statement with the help of some examples.

Solution:
Among the three consecutive numbers, there must be one even number and one multiple of 3. Thus, the product must be multiple of 6.

Example:
(i) \(2 \times 3 \times 4 = 24\)
(ii) \(4 \times 5 \times 6 = 120\)

8. The sum of two consecutive odd numbers is always divisible by 4. Verify this statement with the help of some examples.

Solution:

3 + 5 = 8 and 8 is divisible by 4.
5 + 7 = 12 and 12 is divisible by 4
7 + 9 = 16 and 16 is divisible by 4
9 + 11 = 20 and 20 is divisible by 4.

9. In which of the following expressions, prime factorization has been done?

(A) \(24 = 2 \times 3 \times 4\)
(B) \(56 = 7 \times 2 \times 2 \times 2\)
(C) \(70 = 2 \times 5 \times 7\)
(D) \(54 = 2 \times 3 \times 9\)

Solution:

In expressions (b) and (c), prime factorization has been done.

(A) \(24 = 2 \times 3 \times 4 = 2 \times 2 \times 2 \times 3\)
(B) \(56 = 7 \times 2 \times 2 \times 2\)
(C) \(70 = 2 \times 5 \times 7\)
(D) \(54 = 2 \times 3 \times 9 = 2 \times 3 \times 3 \times 3\)

10. Determine if 25110 is divisible by 45.

[Hint: 5 and 9 are co-prime numbers. Test the divisibility of the number by 5 and 9].

Solution:

The prime factorization of 45 = \(5 \times 9\)
25110 is divisible by 5 as ‘0’ is at its unit place
25110 is divisible by 9 as sum of digits is divisible by 9
Therefore, the number must be divisible by \(5 \times 9 = 45 \)

11. 18 is divisible by both 2 and 3. It is also divisible by \(2 \times 3 = 6 \). Similarly, a number is divisible by both 4 and 6. Can we say that the number must also be divisible by \(4 \times 6 = 24 \)? If not, give an example to justify your answer.

Solution:

No. Number 12 is divisible by both 6 and 4 but 12 is not divisible by 24.

12. I am the smallest number, having four different prime factors. Can you find me?

Solution:

The smallest four prime numbers are 2, 3, 5 and 7.

Hence, the required number is \(2 \times 3 \times 5 \times 7 = 210 \)

Exercise 3.6

1. Find the HCF of the following numbers:

 (A) 18, 48
 (B) 30, 42
 (C) 18, 60
 (D) 27, 63
 (E) 36, 84
 (F) 34, 102
 (G) 70, 105, 175
 (H) 91, 112, 49
 (I) 18, 54, 81
 (J) 12, 45, 75

Solution:

(A) Factors of 18 = \(2 \times 3 \times 3 \)

Factors of 48 = \(2 \times 2 \times 2 \times 2 \times 3 \)

H.C.F. (18, 48) = \(2 \times 3 = 6 \)

(B) Factors of 30 = \(2 \times 3 \times 5 \)

Factors of 42 = \(2 \times 3 \times 7 \)

H.C.F. (30, 42) = \(2 \times 3 = 6 \)

(C) Factors of 18 = \(2 \times 3 \times 3 \)
Factors of 60 = \(2 \times 2 \times 3 \times 5\)
H.C.F. (18, 60) = 2 × 3 = 6
(D) Factors of 27 = \(3 \times 3 \times 3\)
Factors of 63 = \(3 \times 3 \times 7\)
H.C.F. (27, 63) = 3 × 3 = 9
(E) Factors of 36 = \(2 \times 2 \times 3 \times 3\)
Factors of 84 = \(2 \times 2 \times 3 \times 7\)
H.C.F. (36, 84) = 2 × 2 × 3 = 12
(F) Factors of 34 = \(2 \times 17\)
Factors of 102 = \(2 \times 3 \times 17\)
H.C.F. (34, 102) = 2 × 17 = 34
(G) Factors of 70 = \(2 \times 5 \times 7\)
Factors of 105 = \(3 \times 5 \times 7\)
Factors of 175 = \(5 \times 5 \times 7\)
H.C.F. = 5 × 7 = 35
(H) Factors of 91 = \(7 \times 13\)
Factors of 112 = \(2 \times 2 \times 2 \times 2 \times 7\)
Factors of 49 = \(7 \times 7\)
H.C.F. = 1 × 7 = 7
(I) Factors of 18 = \(2 \times 3 \times 3\)
Factors of 54 = \(2 \times 3 \times 3 \times 3\)
Factors of 81 = \(3 \times 3 \times 3 \times 3\)
H.C.F. = 3 × 3 = 9
(J) Factors of 12 = \(2 \times 2 \times 3\)
Factors of 45 = \(3 \times 3 \times 5\)
Factors of 75 = \(3 \times 5 \times 5\)
H.C.F. = 1 × 3 = 3

2. What is the HCF of two consecutive numbers?

(A)
(B) even numbers?
(C) odd numbers?

Solution:

(A) H.C.F. of two consecutive numbers be 1.
(B) H.C.F. of two consecutive even numbers be 2.
(C) H.C.F. of two consecutive odd numbers be 1.

3. H.C.F. of co-prime numbers 4 and 15 was found as follows by factorisation:

\[4 = 2 \times 2 \text{ and } 15 = 3 \times 5 \] since there is no common prime factor, so H.C.F of 4 and 15 is 0. Is the answer correct? If not, what is the correct H.C.F.?

Solution:

No.

Factors of 4 = \(2 \times 2 \times 1\)
Factors of 15 = \(3 \times 5 \times 1\)
H.C.F. = 1
So, the correct H.C.F. is 1.

3.7

1. Renu purchases two bags of fertilizer of weights 75 kg and 69 kg. Find the maximum value of weight which can measure the weight of the fertilizer exact number of times.

Solution:

For finding maximum weight, we have to find H.C.F. of 75 and 69.

Factors of 75 = \(3 \times 5 \times 5\)
Factors of 69 = \(3 \times 69\)
H.C.F. = 3
Therefore, the required weight is 3 kg.

2. Three boys step off together from the same spot. Their steps measure 63 cm, 70 cm and 77 cm respectively. What is the minimum distance each should cover so that all can cover the distance in complete steps?

Solution:

For finding minimum distance, we must find L.C.M. of 63, 70 and 77.

<table>
<thead>
<tr>
<th>7</th>
<th>63,70,77</th>
</tr>
</thead>
</table>

Practice more on Playing With Numbers
L.C.M. of 63, 70 and 77 = $7 \times 9 \times 10 \times 11 = 6930$ cm
Therefore, the minimum distance is 6930 cm.

3. The length, breadth and height of a room are 825 cm, 675 cm and 450 cm respectively. Find the longest tape which can measure the three dimensions of the room exactly.

Solution:

The measurement of longest tape = H.C.F. of 825 cm, 675 cm and 450 cm.
Factors of 825 = $3 \times 5 \times 5 \times 11$
Factors of 675 = $3 \times 5 \times 5 \times 3 \times 3$
Factors of 450 = $2 \times 3 \times 3 \times 5 \times 5$
H.C.F. = $3 \times 5 \times 5 = 75$ cm
Therefore, the longest tape is 75 cm.

4. Determine the smallest 3-digit number which is exactly divisible by 6, 8 and 12.

Solution:

L.C.M. of 6, 8 and 12 = $2 \times 2 \times 2 \times 3 = 24$
The smallest 3-digit number = 100
To find the number, we must divide 100 by 24
$100 = 24 \times 4 + 4$
Therefore, the required number = $100 + (24 - 4) = 120$.

5. Determine the largest 3-digit number which is exactly divisible by 8, 10 and 12.

Solution:
L.C.M. of 8, 10, 12 = $2 \times 2 \times 2 \times 3 \times 5 = 120$

The largest three-digit number = 999

$$\begin{array}{c|c}
8 & 999 \\
-960 & \\
\hline
39 & \\
\end{array}$$

Now,

Therefore, the required number = $999 - 39 = 960$

6. The traffic lights at three different road crossings change after every 48 seconds, 72 seconds and 108 seconds respectively. If they change simultaneously at 7 a.m. at what time will they change simultaneously again?

Solution:

L.C.M. of 48, 72, 108 = $2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 = 432$ sec.

After 432 seconds, the lights change simultaneously.

432 second = 7 minutes 12 seconds

Therefore the time = 7 a.m. +7 minutes 12 seconds

= 7:07:12 a.m.
7. Three tankers contain 403 litres and 465 litres of diesel respectively. Find the maximum capacity of a container that can measure the diesel of three containers exact number of times.

Solution:

The maximum capacity of container = H.C.F. \((403, 434, 465)\)

Factors of 403 = \(13 \times 31\)

Factors of 434 = \(2 \times 7 \times 31\)

Factors of 465 = \(3 \times 5 \times 31\)

H.C.F. = 31

Therefore, 31 litres of container is required to measure the quantity.

8. Find the least number which when divided by 6, 15 and 18, leave remainder 5 in each case.

Solution:

<table>
<thead>
<tr>
<th>2</th>
<th>6,15,18</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3,15,9</td>
</tr>
<tr>
<td>3</td>
<td>1,5,3</td>
</tr>
<tr>
<td>5</td>
<td>1,5,1</td>
</tr>
</tbody>
</table>

L.C.M. of 6, 15 and 18 = \(2 \times 3 \times 3 \times 5 = 90\)

Therefore, the required number = 90 + 5 = 95

9. Find the smallest 4-digit number which is divisible by 18, 24 and 32.

Solution:

<table>
<thead>
<tr>
<th>2</th>
<th>18,24,32</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>9,12,16</td>
</tr>
<tr>
<td>2</td>
<td>9,6,8</td>
</tr>
<tr>
<td>2</td>
<td>9,3,4</td>
</tr>
<tr>
<td>2</td>
<td>9,3,2</td>
</tr>
<tr>
<td>3</td>
<td>9,3,1</td>
</tr>
<tr>
<td>3</td>
<td>3,1,1</td>
</tr>
</tbody>
</table>

L.C.M. of 18, 24 and 32 = \(2 \times 2 \times 2 \times 2 \times 3 \times 3 = 288\)
The smallest four-digit number = 1000

\[
\begin{array}{c|c|c}
\hline
288 & 1000 & 3 \\
\hline
& -864 & \\
\hline
& 136 & \\
\hline
\end{array}
\]

Now,

Therefore, the required number is \(1000 + (288 - 136) = 1152\).

10. Find the LCM of the following numbers:

 (A) 9 and 4

 (B) 12 and 5

 (C) 6 and 5

 (D) 15 and 4

Observe a common property in the obtained L.C.Ms. Is LCM the product of two numbers in each case?

Solution:

(A) L.C.M. of 9 and 4

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td>9,4</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>9, 2</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>9, 1</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>3, 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1, 1</td>
</tr>
</tbody>
</table>

\[= 2 \times 2 \times 3 \times 3\]

\[= 36\]

(B) L.C.M. of 12 and 5

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td>12, 5</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>6, 5</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>3, 5</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>1, 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1, 1</td>
</tr>
</tbody>
</table>

\[= 2 \times 2 \times 3 \times 5\]

\[= 60\]
(C) L.C.M. of 6 and 5

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>6,5</td>
</tr>
<tr>
<td>3</td>
<td>3,5</td>
</tr>
<tr>
<td>5</td>
<td>1,5</td>
</tr>
</tbody>
</table>

= 2 × 3 × 5
= 30

(D) L.C.M. of 15 and 4

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>15,4</td>
</tr>
<tr>
<td>2</td>
<td>15,2</td>
</tr>
<tr>
<td>3</td>
<td>15,1</td>
</tr>
<tr>
<td>5</td>
<td>5,1</td>
</tr>
</tbody>
</table>

= 2 × 2 × 3 × 5
= 60

Yes, the L.C.M. is equal to the product of two numbers in each case. And L.C.M. is also the multiple of 3.

11. Find the LCM of the following numbers in which one number is the factor of the other.

(A) 5, 20
(B) 6, 18
(C) 12, 48
(D) 9, 45

What do you observe in the results obtained?

Solution:

(A)
L.C.M. of 5 and 20
= $2 \times 2 \times 5$
= 20

(B)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>6,18</td>
</tr>
<tr>
<td>3</td>
<td>3,9</td>
</tr>
<tr>
<td>3</td>
<td>1,3</td>
</tr>
<tr>
<td></td>
<td>1,1</td>
</tr>
</tbody>
</table>

L.C.M. of 6 and 18
= $2 \times 3 \times 3$
= 18

(C)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>12,48</td>
</tr>
<tr>
<td>2</td>
<td>6,24</td>
</tr>
<tr>
<td>2</td>
<td>3,12</td>
</tr>
<tr>
<td>2</td>
<td>3,6</td>
</tr>
<tr>
<td>3</td>
<td>3,3</td>
</tr>
<tr>
<td></td>
<td>1,1</td>
</tr>
</tbody>
</table>

L.C.M. of 12 and 48
= $2 \times 2 \times 2 \times 2 \times 3$
= 48

(D)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>9,45</td>
</tr>
<tr>
<td>3</td>
<td>3,15</td>
</tr>
<tr>
<td>5</td>
<td>1,5</td>
</tr>
<tr>
<td></td>
<td>1,1</td>
</tr>
</tbody>
</table>

L.C.M. of 9 and 45
= $3 \times 3 \times 5$
= 45
From these all cases, we can conclude that if the smallest number if the factor of largest number, then the L.C.M. of these two numbers is the larger number.