B. E. Common to all Programmes
Choice Based Credit System (CBCS) and Outcome Based Education (OBE)
SEMESTER - III

TRANSFORM CALCULUS, FOURIER SERIES AND NUMERICAL TECHNIQUES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>CIE Marks</th>
<th>SEE Marks</th>
<th>Exam Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>18MAT31</td>
<td>40</td>
<td>60</td>
<td>03</td>
</tr>
</tbody>
</table>

Course Learning Objectives:
- To have an insight into Fourier series, Fourier transforms, Laplace transforms, Difference equations and Z-transforms.
- To develop the proficiency in variational calculus and solving ODE’s arising in engineering applications, using numerical methods.

Module-1
Laplace Transform: Definition and Laplace transforms of elementary functions (statements only). Laplace transforms of Periodic functions (statement only) and unit-step function – problems.
Inverse Laplace Transform: Definition and problems, Convolution theorem to find the inverse Laplace transforms (without Proof) and problems. Solution of linear differential equations using Laplace transforms.

Module-2
Fourier Series: Periodic functions, Dirichlet’s condition. Fourier series of periodic functions period $\frac{2\pi}{2}$ and arbitrary period. Half range Fourier series. Practical harmonic analysis.

Module-3
Difference Equations and Z-Transforms: Difference equations, basic definition, z-transform-definition, Standard z-transforms, Damping and shifting rules, initial value and final value theorems (without proof) and problems, Inverse z-transform and applications to solve difference equations.

Module-4
Numerical Solutions of Ordinary Differential Equations(ODE’s):
Numerical solution of ODE’s of first order and first degree - Taylor’s series method, Modified Euler’s method. Runge-Kutta method of fourth order, Milne’s and Adam-Bash forth predictor and corrector method (No derivations of formulae)-Problems.

Module-5
Numerical Solution of Second Order ODE’s: Runge-Kutta method and Milne’s predictor and corrector method. (No derivations of formulae).
Calculus of Variations: Variation of function and functional, variational problems, Euler’s equation, Geodesics, hanging chain, problems.

Course Outcomes: At the end of the course the student will be able to:
- CO1: Use Laplace transform and inverse Laplace transform in solving differential/ integral equation arising in network analysis, control systems and other fields of engineering.
- CO2: Demonstrate Fourier series to study the behaviour of periodic functions and their applications in system communications, digital signal processing and field theory.
- CO3: Make use of Fourier transform and Z-transform to illustrate discrete/continuous function arising in wave and heat propagation, signals and systems.
- CO4: Solve first and second order ordinary differential equations arising in engineering problems using single step and multistep numerical methods.
- CO5: Determine the externals of functionals using calculus of variations and solve problems arising in dynamics of rigid bodies and vibrational analysis.

Question paper pattern:
- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub-questions) from each module.
- Each full question will have sub-question covering all the topics under a module.

The students will have to answer five full questions, selecting one full question from each module.

<table>
<thead>
<tr>
<th>Sl No</th>
<th>Title of the Book</th>
<th>Name of the Author/s</th>
<th>Name of the Publisher</th>
<th>Edition and Year</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Textbooks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reference Books</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Advanced Engineering Mathematics</td>
<td>Chandrika Prasad and Reena Garg</td>
<td>Khanna Publishing, 2018</td>
<td></td>
</tr>
</tbody>
</table>

Web links and Video Lectures:
2. http://www.class-central.com/subject/math(MOOCs)
4. VTU EDUSAT PROGRAMME - 20
Course Learning Objectives

This course will enable the students to:

- Impart with the knowledge of generalized measurement systems.
- Learn the characteristics of various types of measurement systems and errors in measuring instruments.
- Analyze the circuits for the measurement of Resistance, Capacitance, Inductance, and Frequency.
- Impart with the basic concepts of CRO and its usage for the measurement of various parameters.
- Understand the concepts of Ammeters, Voltmeter and Multimeters.
- Understand the importance of Display Devices and Recorders in practical fields.

Module -1

Measurements: Introduction, Significance of measurements, methods of measurements, instruments and measurement systems, Functions of instruments and measurement systems, Applications of measurement systems.(Verify)

Measurement Errors: Introduction Gross errors and systematic errors, Absolute and relative errors, basic concepts of accuracy, Precision, Resolution and Significant figures, Measurement error combinations. (relevant problems)

Module -2

Ammeters, Voltmeter and Multimeters:
Introduction, DC ammeter principle only, DC voltmeter, Multi-range voltmeter, Extending voltmeter ranges, Loading, Peak responding and True RMS voltmeters. (relevant problems)

Digital Voltmeters:
Introduction, Ramp type, Dual slope integrating type (V–T), integrating type (V–F) and Successive approximation type (relevant problems).

Digital Instruments: Introduction, Block diagram of a Basic Digital Multi-meter. Digital frequency meters: Basic circuit of a Digital frequency meter, Basic circuit for frequency measurement.

Module -3

Oscilloscopes: Introduction, Basic principles, CRT features, Block diagram and working of each block, Typical CRT connections, Dual beam and dual trace CROs, Electronic switch.

Analog storage oscilloscopes: Need for trace storage, bistable storage CRT, Variable persistence storage CRT.

Digital storage oscilloscopes: Basic DSO operation only.

Module -4

Signal Generators:
Introduction, Fixed and variable AF oscillator, Standard signal generator, Modern laboratory signal generator, AF sine and Square wave generator, Function generator, Square and Pulse generator.

Bridge Circuits for Measurement of R, L & C:

DC bridges: Introduction, Wheatstone bridge, Kelvin Bridge

AC bridges: Capacitance Comparison Bridge, inductance Comparison Bridge, Maxwell’s bridge, Schering Bridge. (relevant problems).

Module -5

Display Devices and Recorders:
Introduction, electrical indicating instruments, digital instruments, digital display methods, digital display unit. Segmental Displays: Seven segmental display, dot matrices, LED, LCD, decade counting assemblies, display systems. Recorders: Recording requirements, analog recorders- Graphic recorders, strip chart recorders & its
types, X-Y recorder, Magnetic & Digital tape recorders.

Course Outcomes: After studying this course, students will be able to:
- Analyze instrument characteristics, errors and generalized measurement system.
- Analyze and use the circuit for the measurement of R, L, C, F, I, V etc.
- Use of Ammeters, Voltmeter and Multimeters and CRO for measurement.
- Analyze and interpret different signal generator circuits for the generation of various waveforms.
- Understand and use different display devices and recorders.

Question Paper Pattern:
- The question paper will have TEN questions.
- Each full question carry 20 marks.
- There will be TWO full questions (with maximum of THREE sub-questions) from each module.
- Each full question will have sub-questions covering all the topics under a module.
- The students will have to answer FIVE full questions, selecting ONE full question from each module.

Textbooks:
1. “Electronic Instrumentation”, H. S. Kalsi, TMH, 2004 (Module- 2, 3 & 4)

Reference Books:
Course Code:
- **Course Code:** 18EI/BM/ML33
- **CIE Marks:** 40
- **Teaching Hours/week (L:T:P):** 2:2:0
- **SEE Marks:** 60
- **Teaching Hours/week (L:T:P):** 03
- **Exam Hours:** 03

Course Learning Objectives
This course will enable the students to:
- Describe the types of BJT/FET biasing, and Demonstrate use of BJT/FET amplifiers
- Understand the modeling of BJT/FET for analysis and to Design of BJT/FET Amplifier,
- Understand and Demonstrate Generalize Frequency response of BJT and FET amplifiers.
- Design and analyze Power amplifier circuits.
- Understand the concept of Feedback and its effect on amplifier circuits and Oscillator circuits.

Module - 1
DC Biasing – BJT’s
Introduction, operating point, Fixed-Bias configuration, Emitter-bias configuration, Voltage-Divider Biasing, Emitter Follower Configuration. Relevant problems.

DC Biasing – FET’s

Module - 2
BJT AC Analysis
BJT modeling, re transistor model: Common Emitter fixed Configuration, Voltage-Divider Bias, CE Emitter-Bias Configuration (Excluding P-spice Analysis), Emitter Follower Configuration, Cascaded Systems. The Hybrid Equivalent model, Approximate Hybrid Equivalent Circuit, Fixed bias configuration, Voltage-Divider configuration. Hybrid π Model.

Module - 3
FET Amplifiers
Introduction, JFET Small Signal Model, JFET AC equivalent Circuit, Fixed- Bias Configuration, Self-Bias Configuration (with bypassed Rs only), Voltage-Divider Configuration, Source Follower Configuration.

BJT and JFET Frequency Response:
Introduction, General Frequency Considerations, Low Frequency Response of BJT Amplifier, Low Frequency Response of FET Amplifier, Miller Effect Capacitance, Multistage frequency effects.

Module - 4
Power Amplifiers:
Introduction: Definitions and Amplifier Types, Series Fed Class A Amplifier, Transformer Coupled Class A Amplifier, Class B Amplifier operation.
Class B amplifier circuits: Transformer-Coupled Push-Pull Circuits, Complementary–Symmetry Circuits only, Amplifier Distortion, Class C and Class D Amplifier.

Module - 5
Feedback and Oscillator Circuits:
Feedback concepts, Feedback connection types, effects of negative feedback, practical feedback circuits: - FET based voltage series Feedback, BJT based current series, and FET based voltage shunt feedback.

Oscillator operation: - Barkhausen’s criteria, Tunedoscillator Circuits: BJT based Colpitts, Hartley and Crystal oscillator. Unijunction transistor oscillator

Course Outcomes:
After studying this course, students will able to:
- Explain the biasing of BJT and FET
- Model BJT/FET for ac/dc analysis

Note: Relevant problems on all topics
- Design Single stage, Multistage amplifier, with and without feedback
- Analyze Frequency response of BJT and FET.
- Acquire the knowledge of classifications of Power amplifier, operation, and able to design power amplifier.
- Apply the knowledge gained in designing of BJT/FET/UJT based Oscillators.

Question Paper Pattern:
- The question paper will have TEN questions.
- Each full question carry 20 marks
- There will be TWO full questions (with maximum of THREE sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer FIVE full questions, selecting ONE full question from each module.

Textbook:

Reference Book:
David A. Bell, “Electronic Devices and Circuits”, Oxford University
B. E. BIOMEDICAL ENGINEERING

Choice Based Credit System (CBCS) and Outcome Based Education (OBE)

SEMESTER - III

Digital Design and HDL
(Common to EI, BM & ML)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>CIE Marks</th>
<th>Teaching Hours/week (L:T:P)</th>
<th>SEE Marks</th>
<th>Teaching Hours/week (L:T:P)</th>
<th>Exam Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>18EI/BM/ML34</td>
<td>40</td>
<td>2:2:0</td>
<td>60</td>
<td>03</td>
<td>3</td>
</tr>
</tbody>
</table>

Course Learning Objectives: This course will enable the students to
- To impart the concepts of simplifying Boolean expression using K-map techniques and Quine-McCluskey minimization techniques.
- To impart the concepts of designing and analyzing combinational logic circuits.
- To impart design methods and analysis of sequential logic circuits.
- To impart the concepts of HDL-Verilog data flow and behavioral models for the design of digital systems.

Module -1

Principles of Combinational Logic: Definition of combinational logic, Canonical forms, Generation of switching equations from truth tables, Karnaugh maps- up to 4 variables, Quine-McCluskey Minimization Technique. Quine-McCluskey using Don’t Care Terms.
(Text 1, Chapter 3).

Module -2

Logic Design with MSI Components and Programmable Logic Devices:
Binary Adders and Subtractors, Comparators, Decoders, Encoders, Multiplexers, Programmable Logic Devices (PLDs), Programmable Read only Memories (PROMS).
(Text 2, Chapter 5)

Module -3

Flip-Flops:
(Text 2, Chapter 6)

Module -4

Simple Flip-Flops Applications: Registers, Binary Ripple Counters, Synchronous Binary Counters, Counters based on Shift Registers, Design of Synchronous mod-n Counter using clocked T, JK, D and SR flip-flops.
(Text 2, Chapter 6)

Module -5

Introduction to Verilog:
Structure of Verilog module, Operators, Data Types, Styles of Description- Data flow description, Behavioral description. Implementation of half adder and full adder using Verilog data flow description.
Verilog Behavioral description: Structure, Variable Assignment Statement, Sequential Statements, Loop Statements, Verilog Behavioral Description of Multiplexers (2:1,4:1,8:1).
(Text 3, Chapters: 1, 2, 3)

Course Outcomes: After studying this course, students will able to:
- Simplify Boolean functions using K-map and Quine-McCluskey minimization technique.
- Analyze and design for combinational logic circuits.
- Analyze the concepts of Latches and Flip Flops. (SR, D, T and JK).
- Analyze and design the synchronous sequential circuits.
- Implement Combinational circuits (adders, subtractors, multiplexers) using Verilog descriptions.
Question Paper Pattern
- The question paper will have TEN questions.
- Each full question carry 20 marks
- There will be TWO full questions (with maximum of THREE sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer FIVE full questions, selecting ONE full question from each module.

Textbooks:
1. Digital Logic Applications and Design by John M Yarbrough, Thomson Learning, 2001

Reference Books:
1. Fundamentals of logic design, by Charles H Roth Jr., Cengage Learning
B. E. BIOMEDICAL ENGINEERING
Choice Based Credit System (CBCS) and Outcome Based Education (OBE)
SEMESTER - III

Human Anatomy and Physiology
(Common to BM and ML)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>: 18 BM/ML 35</th>
<th>CIE Marks : 40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching Hours/week (L:T:P)</td>
<td>: 2:2:0</td>
<td>SEE Marks : 60</td>
</tr>
<tr>
<td>Credits</td>
<td>: 03</td>
<td>Exam Hours : 03</td>
</tr>
</tbody>
</table>

Course Learning Objectives:
- To understand the internal environment of human body and homeostasis mechanism
- To provide the basic knowledge of different types of tissues.
- To provide the knowledge of structure and functioning of nervous system, cardiovascular system, respiratory system, digestive system and musculoskeletal system
- To provide the knowledge of physiological parameters of normal health and factors affecting various physiological processes in the body.

Module -1
Introduction: Homeostasis, Tissue, Cartilage: The internal environment and homeostasis, survival needs of the body, movement of substances within the body, body fluids, action potential, propagation of action potential, cell-structure and functions. Epithelial tissue- simple epithelium, stratified epithelium, connective tissue- cells of connective tissue, loose connective tissue, Adipose tissue, Dense connective tissue, Lymphoid tissue, Cartilage- Hyaline cartilage, Fibrocartilage, Elastic cartilage.

Module -2
Nervous System: Functional Components of nervous system, Neurons: Properties of neurons, Cell bodies, Axon and Dendrites, Types of nerves, Synapse and neurotransmitters, neuromuscular junction. Central nervous system: Meninges, ventricles of the brain and CSF. Brain: Cerebrum, functions of cerebrum, functional areas of the cerebrum, Brainstem, Cerebellum, Spinal cord- grey matter, white matter, spinal reflex. Spinal nerves (in brief list & functions), Cranial nerves (in brief list & functions), Autonomic nervous system (in brief)- functions and effects. Pituitary gland and hypothalamus.

Module -3
Cardiovascular System: Introduction, Blood vessels- Arteries and Arterioles, Veins and Venules, capillaries, control of blood vessel diameter, blood supply- internal respiration, cell nutrition. Heart- position, structure-pericardium, myocardium, endocardium, interior of the heart, flow of blood through the heart, blood supply to heart. Conducting system of the heart, factors affecting heart rate, the Cardiac cycle, cardiac output, blood pressure, control of blood pressure, pulse and factors affecting the pulse rate. Circulation of the blood- pulmonary circulation, systemic circulation-aorta (different parts of aorta & their blood supply, in brief). Summary of the main blood vessels (arteries & veins, explanation with flow diagram only).

Module -4
Respiratory System: Organs of respiration, Nose and Nasal cavity- position, structure and functions, pharynx - position, structure, functions. Larynx - position, structure and functions. Trachea, bronchi, bronchioles and alveoli, lungs- position, associated structure, pleura and pleural cavity. Respiration - muscles of respiration, cycle of respiration, variables affecting respiration, lung volumes and capacity

Digestive System: Organs of the digestive system – mouth, tongue, teeth, salivary glands, pharynx, oesophagus, stomach, gastric juice and functions of stomach, small intestine-structure, chemical digestion in small intestine, large intestine - structure, functions of the large intestine. Pancreas and Liver (only physiology)

Module -5
Skeletal System: Bone, Types of bone, structure, bone cells, functions of bone. Axial skeleton- skull, sinuses, Fontanelles, vertebral column characteristics of typical vertebra, different parts of vertebral column (parts only), features of vertebral column, movements and functions of vertebral column, sternum, ribs, shoulder girdle and upper limb, pelvic girdle and lower limb.

Muscles and Joints (Study of muscles along with joints): Muscle tissue: Skeletal muscle, Smooth muscle,
Cardiac muscle, functions of muscle tissue, muscle tone and fatigue. Types of joint- Fibrous, Cartilaginous, Synovial, characteristics of synovial joints, shoulder joint, elbow joint, radioulnar joint, wrist joint, Hip joint, Knee joint, ankle joint.

<table>
<thead>
<tr>
<th>Course Outcomes:</th>
<th>After studying this course, students will able to:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Describe internal environment of human body and explain the fundamental concept of homeostasis.</td>
</tr>
<tr>
<td></td>
<td>• Explain the structure and functioning of various types of tissues.</td>
</tr>
<tr>
<td></td>
<td>• Describe the structure and explain the functioning of various nervous system, cardiovascular system, respiratory system, digestive system and musculoskeletal system.</td>
</tr>
<tr>
<td></td>
<td>• Demonstrate and analyze various physiological parameters in normal and abnormal conditions.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Question Paper Pattern:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• The question paper will have TEN questions.</td>
</tr>
<tr>
<td>• Each full question carry 20 marks</td>
</tr>
<tr>
<td>• There will be TWO full questions (with maximum of THREE sub questions) from each module.</td>
</tr>
<tr>
<td>• Each full question will have sub questions covering all the topics under a module.</td>
</tr>
<tr>
<td>• The students will have to answer FIVE full questions, selecting ONE full question from each module.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Text Books:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Reference Books:</th>
</tr>
</thead>
</table>
Choice Based Credit System (CBCS) and Outcome Based Education (OBE)

SEMESTER - III

Network Analysis
(Common to EI, BM & ML)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>18EI/BM/ML36</th>
<th>CIE Marks : 40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching Hours/week (L:T:P)</td>
<td>3:2:0</td>
<td>SEE Marks : 60</td>
</tr>
<tr>
<td>Teaching Hours/week (L:T:P)</td>
<td>04</td>
<td>Exam Hours : 03</td>
</tr>
</tbody>
</table>

Course Learning Objectives: This course will enable the students to
- To introduce the Basic circuit laws, Network theorems and analyze the networks.
- To analyze the networks by using optimized methods.
- To analyze the network behavior during switching states.
- To realize the network parameters.

Module -1
Basic concepts: Sources of electrical energy, Source transformation, Loop and node analysis with dependent & independent sources for DC networks, concept of super node and super mesh analysis for only independent sources for DC networks. Numerical on all Topics

Module -2
Network theorems:
Super position, reciprocity, Millman’s theorem Thevinin’s & Norton’s theorem (for DC networks only),
Maximum power transfer theorem (for AC & DC networks) Numerical on all Topics

Module -3
Transient behavior and initial conditions: Behavior of circuit elements under switching condition and their representation, evaluation of initial & final conditions in RL, RC & RLC circuits for DC excitations.
Two port network parameters: Definitions and modeling of Z, Y, H & transmission parameters Numerical on all Topics

Module -4
Resonant Circuits:
Series resonance: Variation of current and voltage with frequency, Selectivity & Bandwidth, Q-factor
Parallel resonance: General case-resistance present in both branches, Selectivity & Bandwidth. Numerical on all Topics

Module -5
Network topology: Graph of a network, concepts of: tree & co-tree, incidence matrix, tie-set & cut-set schedules, Principle of duality. Numerical on all Topics

Course Outcomes: After studying this course, students will able to:
- Apply the basic concepts (Laws, theorems) of networks to obtain solution.
- Choose the appropriate/specific technique to analyze the networks.
- Realize and Analyze the network behavior

Question Paper Pattern:
- The question paper will have TEN questions.
- Each full question carry 20 marks
- In each full question, preferably 40% should be related to theoretical concepts/derivations and 60% should be related problems/solutions.
- There will be TWO full questions (with maximum of THREE sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer FIVE full questions, selecting ONE full question from each module.

Textbooks:
<table>
<thead>
<tr>
<th></th>
<th>Reference Books:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Reference Books:</td>
</tr>
</tbody>
</table>
Course Learning Objectives:
This laboratory course enables students to get practical knowledge & experience in design, assembly and evaluation/testing of
- Rectifier circuits without and with filter
- BJT as Amplifier without and with feedback
- JFET Characteristics and as Amplifier.
- MOSFET Characteristics
- BJT as Power Amplifiers
- Oscillators using BJT and FET for frequency generation
- UJT characteristics
- Verification of Theorems and applications in practical fields

Laboratory Experiments
Note: The experiments are to be carried using discrete components only
1. To design and test Full Wave Rectifier (with center tap transformer) with and without filters.
2. To design and test Full Wave Bridge Rectifier with and without filters.
3. To plot characteristics of UJT and to determine its intrinsic stand-off ratio.
4. To design and test the common emitter amplifier (voltage divider bias) without feedback and determine input, output impedance, gain and bandwidth.
5. To design and test the Emitter follower amplifier (BJT) using voltage divider bias and determine input, output impedance, gain and bandwidth.
6. To plot the Drain and Transfer characteristic for the given FET and to find the Drain Resistance and Trans-conductance.
7. To plot the input and output characteristics of n-channel MOSFET and calculated drain resistance, mutual conductance and amplification factor.
8. To design, test and plot the frequency response of Common Source JFET/MOSFET amplifier, and to determine its bandwidth.
9. Wiring and testing of Complimentary symmetry class B push pull power amplifier and calculation of efficiency.
10. To design and test the RC-Phase shift Oscillator using BJT for the given frequency.
11. To design and test the following tuned oscillator circuits for the given frequency. (a) Hartley Oscillator using BJT (b) Colpitts Oscillator using FET.
12. Testing of crystal oscillator and to determine its frequency of oscillation.

Course Outcomes: After studying this course, students will able to:
- Able to design Single stage, Multistage amplifier, with and without feedback
- Able to analyze Frequency response of BJT and FET.
- Acquire the knowledge of Power amplifiers, operation, and able to design power amplifier.
- Apply the knowledge gained in the design of BJT/FET circuits in Oscillators.
- Knowledge of UJT characteristics and its application.
- Applications of theorems in various practical fields.

<table>
<thead>
<tr>
<th>Conduct of Practical Examination:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. All laboratory experiments are to be included for practical examination.</td>
</tr>
<tr>
<td>2. Students are allowed to pick one experiment from the lot.</td>
</tr>
<tr>
<td>3. Strictly follow the instructions as printed on the cover page of answer script for breakup of marks.</td>
</tr>
<tr>
<td>4. Change of experiment is allowed only once and 15% Marks allotted to the procedure part to be made zero.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reference Books:</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Electronics Laboratory Primer - A Design Approach by S.Poorna Chandra, B.Sasikala, S Chand Pub.</td>
</tr>
<tr>
<td>Course Code</td>
</tr>
<tr>
<td>--------------------------</td>
</tr>
<tr>
<td>Teaching Hours/week (L:T:P)</td>
</tr>
<tr>
<td>Teaching Hours/week(L:T:P)</td>
</tr>
</tbody>
</table>

Course Learning Objectives: This course will enable the students to

- The operation of various logic gates and digital circuits and write the Verilog code.
- Design of logic circuits for combinational and sequential circuits and write Verilog code.
- Synthesis of digital circuits, FFs, shift registers and counters using ICs.
- To use FPGA/CPLD kits for downloading the Verilog code and test the output.

Laboratory Experiments:

1. Simplification, realization of Boolean expressions using logic gates/Universal gates
2. To design and implement
 - a) Adder/Subtractor – Full/half using logic gates.
 - b) 4-bit Parallel Adder/ subtractor using IC 7483.
3. To realize
 - a) BCD to Excess-3 code conversion and vice versa
 - b) Binary to Gray code conversion and vice versa
4. To realize
 - a) 4:1 Multiplexer using gates
 - b) 1:8 Demux
 - c) Priority encoder and 3:8 Decoder using IC74138
 - d) One / Two bit comparator
5. To realize the following flip-flops using NAND Gates
 - a) T type
 - b) JK Master slave
 - c) D type
6. To realize the 3-bit counters as a sequential circuit and Mod-N Counter design (7476, 7490, 74192, 74193)
7. Adder/Subtractor – Full/half using Verilog data flow description
8. Code converters using Verilog Behavioral description
 - a) Gray to binary and vice versa
 - b) Binary to excess3 and vice versa
9. Multiplexers/decoders/encoder using Verilog Behavioral description
 - 8:1 mux, 3:8 decoder, 8:3 encoder, Priority encoder
 - 1:8 Demux and verify using test bench
 - 2-bit Comparator using behavioral description
10. Flip-flops using Verilog Behavioral description
 - a) JK type
 - b) SR type
 - c) T type
 - d) D type
11. Counter up/down (BCD and binary), sequential counters using Verilog Behavioral description.
12. Interface experiments: (a) Stepper motor (b) Relay (c) Waveform generation using DAC.

Course Outcomes: After studying this course, students will able to:

- Realize Boolean expression using Universal gates / basic gates using ICs and Verilog
- Demonstrate the function of adder/subtractor circuits using gates/ICs & Verilog.
- Design and analyze the Comparator, Multiplexers Decoders, Encoders circuits using ICs and Verilog.
- Design and analysis of different Flip-flops and counters using gates and FFs
- Able to use FPGA/CPLD kits for down loading Verilog codes for shift registers and counters and check output.
Conduct of Practical Examination:

1. All laboratory experiments are to be included for practical examination.
2. Students are allowed to pick one experiment from the lot.
3. Strictly follow the instructions as printed on the cover page of answer script for breakup of marks.
4. Change of experiment is allowed only once and 15% Marks allotted to the procedure part to be made zero

Reference Books:

2. HDL Programming VHDL and Verilog By Nazeih M. Botros, 2009 reprint, Dreamtech press.
3. Digital Logic Applications and Design by John M Yarbrough, Thomson Learning, 2001
B. E. Common to all Programmes

Outcome Based Education (OBE) and Choice Based Credit System (CBCS)

SEMESTER – II / III / IV

Aadalitha Kannada

<table>
<thead>
<tr>
<th>Course Code</th>
<th>18KAK28/39/49</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIE Marks</td>
<td>100</td>
</tr>
<tr>
<td>Credits</td>
<td>01</td>
</tr>
</tbody>
</table>

Course Details

Course Code
18KAK28/39/49

CIE Marks
100

Teaching Hours/Week (L:T:P)
(0:2:0)

Outcome Based Education (OBE) and Choice Based Credit System (CBCS)

SEMESTER – II / III / IV

Aadalitha Kannada

<table>
<thead>
<tr>
<th>Course Code</th>
<th>18KAK28/39/49</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIE Marks</td>
<td>100</td>
</tr>
<tr>
<td>Credits</td>
<td>01</td>
</tr>
</tbody>
</table>

Course Details

Course Code
18KAK28/39/49

CIE Marks
100

Teaching Hours/Week (L:T:P)
(0:2:0)

Outcome Based Education (OBE) and Choice Based Credit System (CBCS)

SEMESTER – II / III / IV

Aadalitha Kannada

<table>
<thead>
<tr>
<th>Course Code</th>
<th>18KAK28/39/49</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIE Marks</td>
<td>100</td>
</tr>
<tr>
<td>Credits</td>
<td>01</td>
</tr>
</tbody>
</table>

Course Details

Course Code
18KAK28/39/49

CIE Marks
100

Teaching Hours/Week (L:T:P)
(0:2:0)

Outcome Based Education (OBE) and Choice Based Credit System (CBCS)

SEMESTER – II / III / IV

Aadalitha Kannada

<table>
<thead>
<tr>
<th>Course Code</th>
<th>18KAK28/39/49</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIE Marks</td>
<td>100</td>
</tr>
<tr>
<td>Credits</td>
<td>01</td>
</tr>
</tbody>
</table>

Course Details

Course Code
18KAK28/39/49

CIE Marks
100

Teaching Hours/Week (L:T:P)
(0:2:0)
Vyavaharika Kannada

<table>
<thead>
<tr>
<th>Course Code</th>
<th>18KVK28/39/49</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching Hours/Week (L:T:P)</td>
<td>(0:2:0)</td>
</tr>
<tr>
<td>CIE Marks</td>
<td>100</td>
</tr>
<tr>
<td>Credits</td>
<td>01</td>
</tr>
</tbody>
</table>

Course Learning Objectives:
The course will enable the students to understand Kannada and communicate in Kannada language.

Table of Contents:
- Chapter - 1: Vyavaharika Kannada – Parichaya (Introduction to Vyavaharika Kannada).
- Chapter - 2: Kannada Aksharamale haagu uchcharane (Kannada Alphabets and Pronunciation).
- Chapter - 3: Sambhasha neaagi Kannada Padagalu (Kannada Vocabulary for Communication).
- Chapter - 4: Kannada Grammar in Conversations (Sambhashanealli Kannada Vyakarana).
- Chapter - 5: Activities in Kannada.

Course Outcomes:
At the end of the course, the student will be able to understand Kannada and communicate in Kannada language.
B. E. Common to all Programmes
Outcome Based Education (OBE) and Choice Based Credit System (CBCS)
SEMESTER - III

CONSTITUTION OF INDIA, PROFESSIONAL ETHICS AND CYBER LAW (CPC)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>18CPC39/49</th>
<th>CIE Marks</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching Hours/Week (L:T:P)</td>
<td>(1:0:0)</td>
<td>SEE Marks</td>
<td>60</td>
</tr>
<tr>
<td>Credits</td>
<td>01</td>
<td>Exam Hours</td>
<td>02</td>
</tr>
</tbody>
</table>

Course Learning Objectives: To

- know the fundamental political codes, structure, procedures, powers, and duties of Indian government institutions, fundamental rights, directive principles, and the duties of citizens
- Understand engineering ethics and their responsibilities; identify their individual roles and ethical responsibilities towards society.
- Know about the cybercrimes and cyber laws for cyber safety measures.

Module-1
Introduction to Indian Constitution:

Module-2
Union Executive and State Executive:

Module-3
Elections, Amendments and Emergency Provisions:
Constitutional special provisions: Special Provisions for SC and ST, OBC, Women, Children and Backward Classes.

Module-4
Professional / Engineering Ethics:

Module-5
Internet Laws, Cyber Crimes and Cyber Laws:
Internet and Need for Cyber Laws, Modes of Regulation of Internet, Types of cyber terror capability, Net neutrality, Types of Cyber Crimes, India and cyber law, Cyber Crimes and the information Technology Act 2000, Internet Censorship. Cybercrimes and enforcement agencies.

Course Outcomes: On completion of this course, students will be able to,

CO 1: Have constitutional knowledge and legal literacy.
CO 2: Understand Engineering and Professional ethics and responsibilities of Engineers.
CO 3: Understand the cybercrimes and cyber laws for cyber safety measures.

Question paper pattern for SEE and CIE:
- The SEE question paper will be set for 100 marks and the marks scored by the students will proportionately be reduced to 60. The pattern of the question paper will be objective type (MCQ).
- For the award of 40 CIE marks, refer the University regulations 2018.

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Title of the Book</th>
<th>Name of the Author/s</th>
<th>Name of the Publisher</th>
<th>Edition and Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Textbook/s</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Constitution of India, Professional Ethics and Human Rights</td>
<td>Shubham Singles, Charles E. Haries, and et al</td>
<td>Cengage Learning India</td>
<td>2018</td>
</tr>
<tr>
<td>2</td>
<td>Cyber Security and Cyber Laws</td>
<td>Alfred Basta and et al</td>
<td>Cengage Learning India</td>
<td>2018</td>
</tr>
<tr>
<td>Reference Books</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Engineering Ethics</td>
<td>M. Govindarajan, S. Natarajan, V. S. Senthilkumar</td>
<td>Prentice –Hall,</td>
<td>2004</td>
</tr>
</tbody>
</table>
B. E. Common to all Programmes
Choice Based Credit System (CBCS) and Outcome Based Education (OBE)
SEMESTER - III

ADDITIONAL MATHEMATICS – I
(Mandatory Learning Course: Common to All Programmes)
(A Bridge course for Lateral Entry students under Diploma quota to BE/B. Tech programmes)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>18MATDIP31</th>
<th>CIE Marks</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching Hours/Week (L:T:P)</td>
<td>(2:2:0)</td>
<td>SEE Marks</td>
<td>60</td>
</tr>
<tr>
<td>Credits</td>
<td>0</td>
<td>Exam Hours</td>
<td>03</td>
</tr>
</tbody>
</table>

Course Learning Objectives:
- To provide basic concepts of complex trigonometry, vector algebra, differential and integral calculus.
- To provide an insight into vector differentiation and first order ODE’s.

Module-1
Complex Trigonometry: Complex Numbers: Definitions and properties. Modulus and amplitude of a complex number, Argand’s diagram, De-Moivre’s theorem (without proof).
Vector Algebra: Scalar and vectors. Addition and subtraction and multiplication of vectors- Dot and Cross products, problems.

Module-2

Module-3
Vector Differentiation: Differentiation of vector functions. Velocity and acceleration of a particle moving on a space curve. Scalar and vector point functions. Gradient, Divergence, Curl-simple problems. Solenoidal and irrotational vector fields-Problems.

Module-4
Integral Calculus: Review of elementary integral calculus. Reduction formulae for \(\sin^n x, \cos^n x \) (with proof) and \(\sin^m x \cos^n x \) (without proof) and evaluation of these with standard limits-Examples. Double and triple integrals-Simple examples.

Module-5
Ordinary differential equations (ODE’s). Introduction-solutions of first order and first degree differential equations: exact, linear differential equations. Equations reducible to exact and Bernoulli’s equation.

Course Outcomes: At the end of the course the student will be able to:
- CO1: Apply concepts of complex numbers and vector algebra to analyze the problems arising in related area.
- CO2: Use derivatives and partial derivatives to calculate rate of change of multivariate functions.
- CO3: Analyze position, velocity and acceleration in two and three dimensions of vector valued functions.
- CO4: Learn techniques of integration including the evaluation of double and triple integrals.
- CO5: Identify and solve first order ordinary differential equations.

Question paper pattern:
- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub-questions) from each module.
- Each full question will have sub-question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.
<table>
<thead>
<tr>
<th>Textbook</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Reference Books</th>
</tr>
</thead>
</table>
B. E. Common to all Programmes

Outcome Based Education (OBE) and Choice Based Credit System (CBCS)

SEMESTER - IV

COMPLEX ANALYSIS, PROBABILITY AND STATISTICAL METHODS

<table>
<thead>
<tr>
<th>Course Code</th>
<th>18MAT41</th>
<th>CIE Marks</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching Hours/Week (L:T:P)</td>
<td>(2:2:0)</td>
<td>SEE Marks</td>
<td>60</td>
</tr>
<tr>
<td>Credits</td>
<td>03</td>
<td>Exam Hours</td>
<td>03</td>
</tr>
</tbody>
</table>

Course Learning Objectives:
- To provide an insight into applications of complex variables, conformal mapping and special functions arising in potential theory, quantum mechanics, heat conduction and field theory.
- To develop probability distribution of discrete, continuous random variables and joint probability distribution occurring in digital signal processing, design engineering and microwave engineering.

Module-1

Module-2

Conformal transformations: Introduction. Discussion of transformations: $w=z^2$, $w=e^z$, $w=z+\frac{1}{z}$ ($z \neq 0$). Bilinear transformations- Problems.

Complex integration: Line integral of a complex function-Cauchy’s theorem and Cauchy’s integral formula and problems.

Module-3

Probability Distributions: Review of basic probability theory. Random variables (discrete and continuous), probability mass/density functions. Binomial, Poisson, exponential and normal distributions- problems (No derivation for mean and standard deviation)-Illustrative examples.

Module-4

Curve Fitting: Curve fitting by the method of least squares- fitting the curves of the form-

$y = ax + b$, $y = ax^b$ & $y = ax^2 + bx + c$.

Statistical Methods: Correlation and regression-Karl Pearson’s coefficient of correlation and rank correlation-problems. Regression analysis- lines of regression –problems.

Module-5

Joint probability distribution: Joint Probability distribution for two discrete random variables, expectation and covariance.

Sampling Theory: Introduction to sampling distributions, standard error, Type-I and Type-II errors. Test of hypothesis for means, student’s t-distribution, Chi-square distribution as a test of goodness of fit.

Course Outcomes:
- CO1: Use the concepts of analytic function and complex potentials to solve the problems arising in electromagnetic field theory.
- CO2: Utilize conformal transformation and complex integral arising in aerofoil theory, fluid flow visualization and image processing.
- CO3: Apply discrete and continuous probability distributions in analyzing the probability models arising in engineering field.
- CO4: Make use of the correlation and regression analysis to fit a suitable mathematical model for the statistical data.
- CO5: Construct joint probability distributions and demonstrate the validity of testing the hypothesis.

Question paper pattern:
- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub-questions) from each module.
- Each full question will have sub-question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

<table>
<thead>
<tr>
<th>Sl No</th>
<th>Title of the Book</th>
<th>Name of the Author/s</th>
<th>Name of the Publisher</th>
<th>Edition and Year</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Textbooks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Advanced Engineering Mathematics</td>
<td>Chandrika Prasad and Reena Garg</td>
<td>Khanna Publishing,</td>
<td>2018</td>
</tr>
<tr>
<td></td>
<td>Reference Books</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Web links and Video Lectures:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1. http://nptel.ac.in/courses.php?disciplineID=111</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2. http://www.class-central.com/subject/math(MOOCs)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4. VTU EDUSAT PROGRAMME - 20</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Choice Based Credit System (CBCS) and Outcome Based Education (OBE)

SEMESTER - IV

Signal Conditioning and Data Acquisition Circuits
(Common to EI, BM & ML)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>18 EI/BM/ML42</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIE Marks</td>
<td>40</td>
</tr>
<tr>
<td>Teaching Hours/week (L:T:P)</td>
<td>2:2:0</td>
</tr>
<tr>
<td>SEE Marks</td>
<td>60</td>
</tr>
<tr>
<td>Credits</td>
<td>03</td>
</tr>
<tr>
<td>Exam Hours</td>
<td>03</td>
</tr>
</tbody>
</table>

Course Learning Objectives: This course will enable the students to
- Define and describe Op Amp, basic concepts, characteristics and specifications
- Gain knowledge about Linear and nonlinear applications op-amp.
- Design and develop circuits like, amplifiers, filters, Timers to meet industrial requirements.
- Get a firm grasp of basic principles of op-amp.

Module -1

Introduction to Operational Amplifiers: Introduction, Block schematic of an Op-amp, Power supply connections, Characteristics of an Ideal OP-AMP, Inverting Amplifier, Non-inverting Amplifier, Voltage follower, Differential Amplifier, CMRR. (Relevant problems).

Operational Amplifier Characteristics: DC characteristics – Input bias current, Input offset current, Input offset voltage, Total output offset voltage, Thermal drift. AC characteristics – Frequency response, Slew rate, PSRR.

Basic op-amp applications – Scale changer/Inverter.
Summing amplifier: Inverting summing amplifier, Non-inverting Summing amplifier, Subtractor, Instrumentation Amplifier. (Relevant problems).

Module -2

Operational Amplifier Applications: V – I and I – V converter, Op-amp circuit using diodes, sample and hold circuit, Differentiator and Integrator.

Comparator and waveforms generator: Comparator, Regenerative comparator (Schmitt Trigger), Astable multivibrator, Monostable multivibrator and Triangular waveform generator. Phase shift oscillator, Wien bridge oscillator. (Relevant problems).

Module -3

Voltage Regulators: Introduction, Series Op-amp regulator, IC voltage regulators, 723 general purpose regulators, switching regulator.

Active filters: First and Second order LPF, First and Second orders HPF, Band Pass Filters, Band Reject filters. (Design examples).

Module -4

Phase Locked Loops: Basic Principles, Analog phase Detector/comparator, Voltage controlled oscillator.PLL applications: Frequency Multiplication/Division, Frequency translation, FM demodulation.

Module -5

Data Acquisition Systems: Types of instrumentation systems, Components of analog data acquisition system, Digital data acquisition system.

Data Converters:
- **Digital to Analog Converters:** Basic DAC techniques, Weighted Resistor DAC, R – 2R Ladder DAC, DAC 0800 (Data sheet: Features and description only).
- **Analog to Digital Converters:** Functional diagram of ADC, Flash ADC, Counter type ADC, Successive approximation ADC, Dual slope ADC. ADC 0809 (Data sheet: Features, specifications and description only), DAC/ADC specifications.
Course Outcomes: After studying this course, students will able to:

1. Understand the basic principles and operation of op-amp.
2. Design and develop circuits to meet the practical applications
3. Implement and integrate the op-amp circuits in electronic gadgets.

Question Paper Pattern:
- The question paper will have TEN questions.
- Each full question carry 20 marks
- There will be TWO full questions (with maximum of THREE sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer FIVE full questions, selecting ONE full question from each module.

Textbooks:

Reference Books:
B. E. BIOMEDICAL ENGINEERING
Choice Based Credit System (CBCS) and Outcome Based Education (OBE)
SEMESTER - IV
Embedded Controllers
(Common to EI, BM & ML)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>: 18EI/BM/ML43</th>
<th>CIE Marks : 40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching Hours/week (L:T:P)</td>
<td>: 2:2:0</td>
<td>SEE Marks : 60</td>
</tr>
<tr>
<td>Credits</td>
<td>:03</td>
<td>Exam Hours : 03</td>
</tr>
</tbody>
</table>

Course Learning Objectives: This course enables students to understand:
- Basics of Microprocessor and Microcontroller
- 8051 Microcontroller architecture and Pin description
- 8051 Addressing modes and instruction set
- Programming of on-chip peripherals in 8051
- Design and develop applications using 8051 Assembly language and C program.
- MSP 430 Microcontroller architecture
- On-chip peripherals and program using Assembly language and C.

Module -1
Microprocessor and Microcontrollers:

Module -2

Module -3
8051 programming in C and interfacing: Data types and time delay in 8051 C, I/O programming, Logic operation, data conversion programs, accessing Code ROM Space, data serialization. 8051 interfacing to LCD and key board, DAC, stepper motor, DC Motor, Parallel and serial ADC. Elevator.

Module -4
Timer/Counter, Serial communication and Interrupts in 8051. Programming 8051 timer/counter, programming timer 0 and 1 in 8051 C, Basics of serial communication, 8051 connections to RS-232. 8051 serial port programming in C. 8051 Interrupts, Programming Timer Interrupts, External hardware Interrupts and serial communication Interrupts. Interrupts priority & Interrupt programming in C.

Module -5

Course Outcomes: After studying this course, Student will be able to:
- Learn architecture of 8051 and MSP 430.
- Learn programming skills using Assembly language and C
- Design and interfacing of microcontroller based embedded systems.
• Build projects

Question Paper Pattern:
- The question paper will have TEN questions.
- Each full question carry 20 marks
- There will be TWO full questions (with maximum of THREE sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer FIVE full questions, selecting ONE full question from each module.

Textbooks:

Reference Books:
B. E. BIOMEDICAL ENGINEERING
Choice Based Credit System (CBCS) and Outcome Based Education (OBE)
SEMESTER - IV
Control Systems
(Common to EI & BM)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>18EI/BM44</th>
<th>CIE Marks : 40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching Hours/week (L:T:P)</td>
<td>3:2:0</td>
<td>SEE Marks : 60</td>
</tr>
<tr>
<td>Credits</td>
<td>04</td>
<td>Exam Hours : 03</td>
</tr>
</tbody>
</table>

Course Learning Objectives: This course will enable the students to
- Understand the basic concepts & mathematical modeling of systems
- Draw block diagram & reduction for a given system
- Obtain Transfer functions by reduction and Signal Flow graph techniques.
- Analyze the system response in time and frequency domain
- Understand and Design of control systems using state space analysis

Module -1
Modeling of Systems and Block diagram: Introduction to Control Systems, Types of Control Systems, with examples. Concept of mathematical modeling of physical systems- Mechanical, Translational (Mechanical accelerometer, systems excluded), and Rotational systems, Analogous systems based on force voltage analogy and force current analogy. Introduction to Block diagram algebra. Numerical problems on all topics.

Module -2
Signal Flow graph: Introduction to Signal Flow graph, Mason’s gain formula. Obtaining Transfer functions for the given SFG using Mason’s gain formula.

Module -3

Module -4
Frequency domain Analysis: Introduction to frequency domain analysis, Correlation between time & frequency response, Bode plots. Numerical problems on all topics.
Numerical problems on all topics.

Module -5
State space Analysis: Concept of state, state variables and state model. State diagrams and State models for Linear continuous-time systems (Electrical systems): State space representation using Physical and Phase variables. Derivation of transfer functions from the state model. Numerical problems on all topics.

Course Outcomes: After studying this course, students will able to:
- Apply modeling knowledge in implementation physical systems.
- Understand the reduction of block diagram & analyze using Signal flow graph.
- Comment on performance of a system by evaluating various parameters.
- Model a system by applying the concept of State Space analysis.
<table>
<thead>
<tr>
<th>Question Paper Pattern:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• The question paper will have TEN questions.</td>
</tr>
<tr>
<td>• Each full question consists of 20 marks.</td>
</tr>
<tr>
<td>• There will be 2 full questions (with maximum of THREE sub questions) from each module.</td>
</tr>
<tr>
<td>• Each full question will have sub questions covering all the topics under a module.</td>
</tr>
<tr>
<td>• The students will have to answer 5 full questions, selecting one full question from each module.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Textbooks:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Reference Books:</th>
</tr>
</thead>
</table>
Choice Based Credit System (CBCS) and Outcome Based Education (OBE)

SEMESTER - IV

Biomedical Transducers and Instrumentation
(Common to BM & ML)

Course Code : 18BM/ML45
CIE Marks : 40
Teaching Hours/week (L:T:P) : 2:2:0
SEE Marks : 60
Credits : 03
Exam Hours : 03

Course Learning Objectives: This course will enable the students to
• Gain the knowledge of working principle and construction details of Biomedical Transducers.
• Acquire the knowledge of transducer applications to access the biological signals.
• Access the performance of various Biomedical Transducers.

Module-1
Fundamental Concepts & Basic Transducers:
Introduction, Classification of Transducers, Measurement, Signals and Noise in the measurement- Measurement, signals and noise, signal to noise ratio, different types of noise. Characteristics of Measurement system-Transducer and measurement system, static characteristics, dynamic characteristics, standard and calibration, accuracy and error.

Module-2
Bioelectric Signals and Electrodes:
Sources of Biomedical Signals, Origin of Bioelectric Signals, Electrocardiogram (ECG), Electroencephalogram (EEG), Electromyogram (EMG), Electrooculogram (EOG), Electroretinogram (ERG), Recording Electrodes– Electrode-tissue interface, Electrolyte-Skin interface, polarization, skin contact impedance, motion artifacts, Silver-Silver Chloride electrodes, Electrodes for ECG, Electrodes for EEG, Electrodes of EMG, Electrical conductivity of electrode jellies and creams, microelectrodes.

Module-3
Pressure Measurement:
Pressure Transducers-LVDT pressure transducers and Strain gauge pressure transducers. Physiological pressure ranges and measurement sites, Direct pressure measurement-catheters for pressure measurement, diaphragm displacement transducers, catheter tip pressure transducers, implantable pressure transducers and pressure telemetering capsules. Indirect pressure measurement-Indirect measurement of systolic, diastolic, and mean blood pressure, Detection of Kortokoff sounds.

Module-4
Temperature Measurement, Transducers and Sensors:

Module-5
Flow Measurement:

Course Outcomes: After studying this course, students will able to:
1. Understand the working principle and construction details of Transducers.
2. Improve the measurement techniques through different approach.
3. Practically can implement the technology in measurement field.

Question Paper Pattern:
• The question paper will have TEN questions.
- Each full question carry 20 marks
- There will be TWO full questions (with maximum of THREE sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer FIVE full questions, selecting ONE full question from each module.

<table>
<thead>
<tr>
<th>Textbooks:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Reference Books:</th>
</tr>
</thead>
</table>
Scientific and Analytical Instrumentation
(Common to EI, BM & ML)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>18EI/BM/ML46</th>
<th>CIE Marks</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching Hours/week (L:T:P)</td>
<td>2:2:0</td>
<td>SEE Marks</td>
<td>60</td>
</tr>
<tr>
<td>Credits</td>
<td>03</td>
<td>Exam Hours</td>
<td>03</td>
</tr>
</tbody>
</table>

Course Learning Objectives:
- To introduce the basic concept of qualitative and quantitative analysis of a given sample.
- To impart various spectroscopic techniques and its instrumentation.
- To impart the concept of separation science and its application.
- To impart methods of Industrial analyzers and its application.

Module -1

An Introduction to Instrumental Methods: Terms associated with Chemical analysis, Classification of instrumental techniques, A review of important consideration in analytical methods, Basic functions of instrumentation, Fundamental Laws of photometry (Textbook 1).

IR Spectroscopy: Basic Components of IR Spectrophotometers, monochromators- littrow mounting, Fourier Transform IR Spectroscopy (Textbook 2).

Module -2

UV and Visible Spectrometers –Instrumentation: Radiation Sources, Wavelength selection: absorption filters, interference filters, Detector, Readout modules (Textbook 1), Instruments for absorption photometry: single beam and double beam spectrophotometer. (Textbook 2)

Module -3

Flame Emission and Atomic Absorption Spectroscopy: Introduction, Instrumentation for flame spectrometric methods, Flame emission spectrometry, atomic absorption spectrometry, Atomic fluorescence spectrometry, Interferences associated with Flames & furnaces, applications, comparison of FES and AAS. (Textbook 1).

Module -4

Gas Chromatography: Chromatograph, Basics parts of a chromatograph: carrier gas supply, sample injection system, chromatographic columns: packed column & capillary column, Detectors: katharometer cell, differential flame ionization detector, electron capture detector. (Textbook 2).

HPLC Instrumentation: Mobile –phase delivery system sample introduction, separation of columns, Detectors– Ultraviolet Photometers & Spectrophotometers, electrochemical detector (amperometric detector), Differential refractometer. (Textbook 1).

Module -5

Blood analyzer: Introduction, Blood pH measurements: electrodes for blood pH measurement, measurement of blood pCO₂, pO₂, A Complete blood gas analyzer.

Air pollution monitoring instruments: Carbon monoxide (CO) -Non-dispersive infrared analyzer, Sulphur dioxide (SO₂)-Conductivitimetry, UV fluorescence method, Nitrogen oxides-Using CO laser, laser opto-acoustic spectroscopy, Hydrocarbons-Flame ionization detector, Ozone-Chemiluminescence, Automated wet chemical air analysis.

Water pollution monitoring instruments. (Textbook 2)
Course Outcomes:
1. The students get well versed with the principle, construction and working of various analytical instrumentation.
2. Students get detailed information about the application of analytical techniques in medicine, Industry, etc.

Question Paper Pattern:
- The question paper will have TEN questions.
- Each full question carry 20 marks
- There will be TWO full questions (with maximum of THREE sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer FIVE full questions, selecting ONE full question from each module.

Textbooks:

Reference Books:
Embedded Controllers Lab
(Common to EI, BM & ML)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>18EI/BM/MLL47</th>
<th>CIE Marks</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching Hours/week (L:T:P)</td>
<td>0:2:2</td>
<td>SEE Marks</td>
<td>60</td>
</tr>
<tr>
<td>Credits</td>
<td>02</td>
<td>Exam Hours</td>
<td>03</td>
</tr>
</tbody>
</table>

Course Learning Objectives:
This laboratory course enables students to:
- Write 8051 Assembly language and C programs for 8051 and MSP430.
- Interface hardware modules to Microcontroller board.
- Develop applications based on Microcontroller 8051 and MSP430.

Laboratory Experiments
Note: Software and Hardware program using KEIL software and MSP 430 IDE.

Software program using 8051 μc
Simple Assembly Language;
- 1. Program using 8051 in Block, Move, Exchange.
- 2. Program in sorting, finding largest and smallest element in an array.
- 3. Counters --> For Hex and BCD up/down count.
- 4. Boolean and Logical Instructions. (Bit Manipulation).
- 5. Subroutines using CALL and RETURN instructions.
- 6. Code Conversions --> ASCII to Decimal, Decimal to ASCII, BCD to ASCII
- Programs to generate delay, programs using serial port and on chip timer/counter.

Software program using MSP 430 IDE
7. Assembly program using MSP 430 for data transfer, Block Move in an array.

Hardware programming (using 8051)
- 8. Stepper motor Interface to 8051 Microcontroller with C Program.
- 9. DC Motor Interface to 8051 Microcontroller with C Program.
- 10. DAC Interface for to generate sine wave, square wave, triangular wave, Ramp wave through 8051 Microcontroller with C Program.
- 12. ADC Interfacing and Elevator System

Course Outcomes:
After the completion of this Laboratory course, students will be able to:
- Get hands-on exposure in 8051 and MSP430 platform.
- Enhance programming skills using Assembly language and C.
- Design and interfacing of microcontroller based embedded systems.
- Build projects

Conduct of Practical Examination:
1. All laboratory experiments are to be included for practical examination.
2. Students are allowed to pick one experiment from the lot.
3. Strictly follow the instructions as printed on the cover page of answer script for breakup of marks.
4. Change of experiment is allowed only once and 15% Marks allotted to the procedure part to be made zero.

Reference Books:
B. E. BIOMEDICAL ENGINEERING

Choice Based Credit System (CBCS) and Outcome Based Education (OBE)

SEMESTER - IV

Biomedical Transducers and Measurements Lab

<table>
<thead>
<tr>
<th>Course Code</th>
<th>18EI/BM/MLL48</th>
<th>CIE Marks</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching Hours/week (L:T:P)</td>
<td>0:2:2</td>
<td>SEE Marks</td>
<td>60</td>
</tr>
<tr>
<td>Credits</td>
<td>02</td>
<td>Exam Hours</td>
<td>03</td>
</tr>
</tbody>
</table>

Course Learning Objectives: This Lab course will enable the students to
- Impart the working principle of sensors and transducer
- Testing the response and plot the characteristics of different transducers
- Interpret and analyze experimental results with theoretical concepts.
- Calibrate the sensors/transducers
- Study and interpret data sheets of different transducers to select the suitable transducer for particular application and safe operation.
- Understand the basic concepts and procedure for the measurement of BP, solution concentration, pH and conductivity.

LIST OF EXPERIMENTS

2. Temperature measurement using RTD, Thermistor and Thermocouple, and to find their sensitivity.
3. Temperature measurement using AD590 / LM34.
5. Measurement of unknown resistance by Wheatstone bridge & finding the sensitivity of the bridge.
7. Measurement of inductance and internal resistance of a choke by three voltmeter method.
9. Characteristics of Load cell and Cantilever beam using Strain gauge (Quarter, Half and Full bridge configuration)
11. Measurement of unknown concentration of given solution/body fluid using Spectrophotometer and Colorimeter
12. (a) Measurement of pH of a given solution/ body fluid using pH meter. (b) Determination of Conductivity of a given unknown solution/ body fluid using conductivity meter

Course Outcomes: After studying this course, students will able to:
- Analyze the response and plot the characteristics of temperature measurement transducers such as RTD, Thermistor, and Thermocouple & AD590.
- Analyze the response and plot the characteristics of displacement measuring transducers such as LVDT and Potentiometric transducer.
- Analyze the response and plot the characteristics of strain gauge type load cell.
- Analyze the response and plot the characteristics of pressure transducer.
- Measure unknown values of resistance, capacitance and Inductance using different bridges.
- Design, build and test the circuits for practical applications using transducers
- Measure BP, solution concentration, pH and conductivity for different biomedical applications.

Conduct of Practical Examination:
1. All laboratory experiments are to be included for practical examination.
2. Students are allowed to pick one experiment from the lot.
3. Strictly follow the instructions as printed on the cover page of answer script for breakup of marks.
4. Change of experiment is allowed only once and 15% Marks allotted to the procedure part to be made zero.

Reference Books:

1. Electronic Instrumentation by H. S. Kalsi, TMH, 2004 (Module-2,3 & 4)
2. Electronic Instrumentation and Measurements by David A Bell, PHI / Pearson Education2006/ Oxford Higher Education, 2013. (Module 1& 3)
B. E. Common to all Programmes
Outcome Based Education (OBE) and Choice Based Credit System (CBCS)
SEMESTER - IV

ADDITIONAL MATHEMATICS – II
(Mandatory Learning Course: Common to All Programmes)
(A Bridge course for Lateral Entry students under Diploma quota to BE/B.Tech. programmes)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>18MATDIP41</th>
<th>CIE Marks</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching Hours/Week (L:T:P)</td>
<td>(2:1:0)</td>
<td>SEE Marks</td>
<td>60</td>
</tr>
<tr>
<td>Credits</td>
<td>0</td>
<td>Exam Hours</td>
<td>03</td>
</tr>
</tbody>
</table>

Course Learning Objectives:
- To provide essential concepts of linear algebra, second & higher order differential equations along with methods to solve them.
- To provide an insight into elementary probability theory and numerical methods.

Module-1

Module-2

Module-3
Higher order ODE’s: Linear differential equations of second and higher order equations with constant coefficients. Homogeneous /non-homogeneous equations. Inverse differential operators. [Particular Integral restricted to \(R(x) = e^{ax}, \sin ax /\cos ax \) for \(f(y) = R(x) \).]

Module-4
Partial Differential Equations(PDE’s):- Formation of PDE’s by elimination of arbitrary constants and functions. Solution of non-homogeneous PDE by direct integration. Homogeneous PDEs involving derivative with respect to one independent variable only.

Module-5

Course Outcomes: At the end of the course the student will be able to:
CO1: Solve systems of linear equations using matrix algebra.
CO2: Apply the knowledge of numerical methods in modelling and solving engineering problems.
CO3: Make use of analytical methods to solve higher order differential equations.
CO4: Classify partial differential equations and solve them by exact methods.
CO5: Apply elementary probability theory and solve related problems.

Question paper pattern:
- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.
<table>
<thead>
<tr>
<th>Sl No</th>
<th>Title of the Book</th>
<th>Name of the Author/s</th>
<th>Name of the Publisher</th>
<th>Edition and Year</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Textbook</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reference Books</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
B. E. BIOMEDICAL ENGINEERING
Choice Based Credit System (CBCS) and Outcome Based Education (OBE)
SEMESTER - V

Technological Innovation Management and Entrepreneurship
(Common to EC/TC/EI/BM/ML)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>: 18ES51</th>
<th>CIE Marks : 40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching Hours/week (L:T:P)</td>
<td>: 2:2:0</td>
<td>SEE Marks : 60</td>
</tr>
<tr>
<td>Credits</td>
<td>: 03</td>
<td>Exam Hours : 03</td>
</tr>
</tbody>
</table>

Course Learning Objectives: This course will enable students to:
- Understand basic skills of Management
- Understand the need for Entrepreneurs and their skills
- Identify the Management functions and Social responsibilities
- Understand the Ideation Process, creation of Business Model, Feasibility Study and sources of funding

Module-1

Management: Nature and Functions of Management – Importance, Definition, Management Functions, Levels of Management, Roles of Manager, Managerial Skills, Management & Administration, Management as a Science, Art & Profession (Selected topics of Chapter 1, Text 1).

Planning: Planning-Nature, Importance, Types, Steps and Limitations of Planning; Decision Making – Meaning, Types and Steps in Decision Making(Selected topics from Chapters 4 & 5, Text 1).

Module-2

Organizing and Staffing: Organization-Nature, Characteristics, Process of Organizing, Principles of Organizing, Span of Management (meaning and importance only), Departmentalisation, Committees-Meaning, Types of Committees; Centralization Vs Decentralization of Authority and Responsibility; Staffing-Need and Importance, Recruitment and Selection Process (Selected topics from Chapters 7, 8 & 11, Text 1).

Directing and Controlling: Meaning and Requirements of Effective Direction, Giving Orders; Motivation-Nature of Motivation, Motivation Theories (Maslow’s Need-Hierarchy Theory and Herzberg’s Two Factor Theory); Communication – Meaning, Importance and Purposes of Communication; Leadership-Meaning, Characteristics, Behavioural Approach of Leadership; Coordination-Meaning, Types, Techniques of Coordination; Controlling – Meaning, Need for Control System, Benefits of Control, Essentials of Effective Control System, Steps in Control Process (Selected topics from Chapters 15 to 18 and 9, Text 1).

Module-3

Social Responsibilities of Business: Meaning of Social Responsibility, Social Responsibilities of Business towards Different Groups, Social Audit, Business Ethics and Corporate Governance (Selected topics from Chapter 3, Text 1).

Entrepreneurship: Definition of Entrepreneur, Importance of Entrepreneurship, concepts of Entrepreneurship, Characteristics of successful Entrepreneur, Classification of Entrepreneurs, Myths of Entrepreneurship, Entrepreneurial Development models, Entrepreneurial development cycle, Problems faced by Entrepreneurs and capacity building for Entrepreneurship.(Selected topics from Chapter 2, Text 2).

Module-4

Family Business: Role and Importance of Family Business, Contributions of Family Business in India, Stages of Development of a Family Business, Characteristics of a Family-owned Business in India, Various types of family businesses(Selected topics from Chapter 4,(Page 71-75) Text 2).

Idea Generation and Feasibility Analysis: Idea Generation; Creativity and Innovation; Identification of Business Opportunities; Market Entry Strategies; Marketing Feasibility; Financial Feasibilities; Political Feasibilities; Economic Feasibility; Social and Legal Feasibilities; Technical Feasibilities; Managerial Feasibility, Location and Other Utilities Feasibilities. (Selected topics from Chapter 6(Page No. 111-117)&Chapter 7(Page No. 140-142), Text 2)

Module-5

Business model – Meaning, designing, analyzing and improvising; Business Plan – Meaning, Scope and Need; Financial, Marketing, Human Resource and Production/Service Plan; Business plan Formats; Project report preparation and presentation; Why some Business Plan fails? (Selected topics from Chapter 8 (Page No 159-164, Text
2) **Financing and How to start a Business?** Financial opportunity identification; Banking sources; Nonbanking Institutions and Agencies; Venture Capital – Meaning and Role in Entrepreneurship; Government Schemes for funding business; Pre launch, Launch and Post launch requirements; Procedure for getting License and Registration; Challenges and Difficulties in Starting an Enterprise(Selected topics from Chapter 7(Page No 147-149),Chapter 5(Page No 93-99) &Chapter 8(Page No. 166-172) Text 2)

Project Design and Network Analysis: Introduction, Importance of Network Analysis, Origin of PERT and CPM, Network, Network Techniques, Need for Network Techniques, Steps in PERT, CPM, Advantages, Limitations and Differences. (Selected topics from Chapters 20, Text 3).

Course Outcomes: After studying this course, students will be able to:
- Understand the fundamental concepts of Management and Entrepreneurship and opportunities in order to setup a business
- Describe the functions of Managers, Entrepreneurs and their social responsibilities
- Understand the components in developing a business plan
- Awareness about various sources of funding and institutions supporting entrepreneurs

Textbooks:

Reference Book:
Module -1

Introduction to Signals and Systems:
Basic elements of a DSP System, Classification of Signals, Sampling Theorem (statement and problems on Nyquist rate), Discrete Time Signals (Representation, Standard Signals, Classification, and Operations), Discrete Time Systems, Convolution Sum, Cross correlation and Auto correlation of sequences.
Text 1: 1.1.1, 1.2, 1.4.2, 2.1, 2.2, 2.3.3, 2.3.7, 2.6.1.

Module -2
Z-Transform and its Application to analysis of LTI Systems:
Direct Z-Transform, Properties of the Z-Transform, Examples, Inverse Z-Transform by Partial-Fraction Expansion method only, System Function of a LTI System, Causality and Stability (from H(z)).
Realization of Digital System: Direct Form I, Direct form II, cascade form and parallel form
Text 1: 3.1.1, 3.2, 3.4.3, 3.3.3, 3.5.3.
Text 2: 9.2, 9.3

Module -3
DFT: Properties and Applications:
Text 1: 7.1.3, 7.2, 7.3.1, 8.1.3.

Module -4
IIR & FIR Filters:
IIR Filters: Low-pass filter specifications, IIR filter Design by Impulse Invariance & Bilinear Techniques, Design of Digital IIR filter by Butterworth approach, Examples. Magnitude response of lowpass Chebyshev Type I, II filter (Theoretical concept only)
FIR Filters: Design of FIR filters – Symmetric and Antisymmetric FIR filters, Design of Linear phase FIR filters by Rectangular Hamming &Hanning windows. Summary of window function characteristics (window shape, transition bandwidth, stop band attenuation, etc.). Implementation of FIR filters by direct form and Single-stage lattice structure only.
Text 1: 10.3.2, 10.3.3, 10.3.4, 9.3.1, 9.3.3, 9.3.4, 10.2.1, 10.2.2, 10.2.7, 9.2.1, 9.2.4

Module -5
Multirate Digital Signal Processing & Adaptive Filters:

Course Outcomes: After studying this course, students will able to:
1. Visualize, Classify and perform computation on discrete time signals, systems and properties
2. Perform the transformation techniques from time domain to other and vice versa, and analyze the system and properties (Z-Transform, DFT etc.)
3. Realize / implement the Direct/ cascade/ parallel/ lattice forms of the given digital system (IIR/ FIR)
4. ComputeDFT by FFT algorithms
5. Develop transformation from analog system to digital system and design and implement IIR and FIR filters.
6. Demonstrate the advanced concepts of signal processing (Multi-rate and Adaptive filtering) and architecture of DSP processor.

Question Paper Pattern:
- The question paper will have TEN questions.
- Each full question carry 20 marks.
- There will be TWO full questions (with maximum of THREE sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer FIVE full questions, selecting ONE full question from each module.

Textbooks:

Reference Books:
B. E. BIOMEDICAL ENGINEERING

Choice Based Credit System (CBCS) and Outcome Based Education (OBE)

SEMESTER - V

<table>
<thead>
<tr>
<th>Clinical Instrumentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
</tr>
<tr>
<td>CIE Marks</td>
</tr>
<tr>
<td>Teaching Hours/week (L:T:P)</td>
</tr>
<tr>
<td>SEE Marks</td>
</tr>
<tr>
<td>Credits</td>
</tr>
<tr>
<td>Exam Hours</td>
</tr>
</tbody>
</table>

Module 1

Electrocardiogram: Action potentials in cardiac muscle, Characteristics of the normal ECG, Cardiac arrhythmias and their electrocardiographic interpretation- Abnormal sinus rhythms, Abnormal Rhythms by impulse conduction blocks, Premature contractions, Paroxysmal Tachycardia, Ventricular & Atrial Fibrillation, Atrial Flutter, Cardiac arrest. Heart sounds, Phonocardiogram, Valvular lesions (Abnormal heart sounds)

(Text1: Chapter 9, Chapter 11, Chapter 13, Chapter 23)

Module 2

Catheterization Laboratory Instrumentation, Arrhythmia monitor, Exercise stress testing, Ambulatory monitoring instruments (Text2: 6.10, 7.2, 7.4, 7.5)

Foetal Monitoring Instruments: Cardiotocograph, Abdominal Foetal Electrocardiogram, Foetal Phonocardiogram (Text2: 8.1, 8.2.1, 8.2.2)

Oximeters: Oximetry, Ear Oximeter, Pulse Oximeter, Skin reflectance Oximeters, Intravascular Oximeter (Text2: 10.1, 10.2, 10.3, 10.4, 10.5)

Module 3

Anatomy of human eye, Physiology of vision, Errors of refraction and their optical correction, Aqueous humor production and drainage, Strabismus.

Clinical methods: Spectacles and contact lenses, Refractive surgery, Snellen’s Chart, Cover – uncover test, Maddox rod test, Maddox wing test.

(Text3: Chapter 1, Chapter 2, Chapter 3, Chapter 9, Chapter 13, Chapter 21, Chapter 23)

Module 4

Tonometry and its types, Perimetry – Peripheral Field Charting, Central Field Charting, Fundus Fluorescein Angiography, Electroretinography, Electro-oculography, Loupe & Lens Examination, Slit-Lamp Examination, Gonioscopy, Retinoscope- Principle, Procedure & Types, Refractometry, Keratometry- principle and types, subjective refraction, Ophthalmoscopy-Direct & Indirect

(Text3: Chapter 21, Chapter 23)

Module 5

Cataract – list of classification only, Surgical techniques for cataract extraction – Intracapsular cataract extraction &Extracapsular cataract extraction for adulthood cataract, Phacoemulsification, Intraocular lens implantation.

General considerations of Glaucoma, surgical procedures for Glaucoma, Vitreous Liquefaction, Vitreous Opacities, Vitreous Haemorrhage, Vitrectomy-types and techniques, Lasers in Ophthalmology, Cryotherapy in Ophthalmology,

(Text3: Chapter 8, Chapter 9, Chapter 10, Chapter 18)

Course Outcomes: After studying this course, students will able to:

1. Analyze and interpret the types of heart abnormalities.
2. Describe the constructional details of equipment’s used in cardiology.
3. Explain the basic principles of ophthalmology instruments.
4. Discuss the clinical methods and surgical procedures in ophthalmology.
5. Use few of the ophthalmological instruments for diagnostic purpose.
Question Paper Pattern:
- The question paper will have TEN questions.
- Each full question carry 20 marks
- There will be TWO full questions (with maximum of THREE sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer FIVE full questions, selecting ONE full question from each module.

Textbooks:
Module 1
Electrocardiograph, Block Diagram Description of an Electrocardiograph, The ECG leads, Effects of Artefacts on ECG Recordings. (Text 1: 5.1, 5.1.1, 5.1.2, 5.1.3)
Electroencephalograph, Block Diagram Description of an Electroencephalograph, Other Biomedical recorders. (Text 1: 5.4, 5.4.1, 5.6)
Bedside patient monitoring Systems, Measurement of Heart rate (Instantaneous heart rate meters), Measurement of Pulse rate, Blood Pressure measurement(Direct and Indirect-Korotkoff”s method, Rheographic method and Oscillometric Measurement method).
Text 1: (6.3, 6.5, 6.5.2, 6.6, 6.7, 6.7.1, 6.7.2.1, 6.7.2.2, 6.7.2.4)

Module 2
Text 1: (17.3, 17.3.1, 17.3.2, 17.4, 17.5, 17.6, 17.6.1, 17.6.2, 17.7, 17.8, 17.9, 17.9.1, 17.9.2, 17.9.3)

Module 3
Cardiac pace makers: Need for Cardiac pace maker. Types of pace makers:-external and Implantable pacemakers, Classification codes for Pacemakers, Ventricular synchronous demand pacemaker, Programmable pacemaker, Power sources for Implantable pacemakers.
Text 1: (25.1, 25.1.1, 25.2, 25.3, 25.3.2, 25.3.3, 25.3.4, 25.3.7)
Cardiac defibrillators: Need for defibrillator. DC defibrillator. Pacer-Cardioverter-defibrillator. Text 1: 26.1, 26.2, 26.4)
Principle of surgical diathermy. Solid state electrosurgical machine. Safety aspects in electrosurgical units. Text 1: 27.1, 27.2, 27.3)

Module 4
Heart lung machine (Cardiac assist device), Lithotripsy, Ventilator, Infant incubator.
(Text 2: 13.3, 13.5, 13.6, 13.7)

Module 5
Introduction to man-Instrument system. Components of Man-Instrument system. Problems encountered in measuring a living system, Physiological effects of Electrical current, Shock Hazards from Electrical equipment’s, Methods of accident prevention.
(Text 3: 1.4, 1.5, 1.7, 16.1, 16.2, 16.3)
Precautions to minimize Electric shock hazards. Safety codes for Electromedical equipment. (Text 1: 18.2.2, 18.3)
Medical equipment maintenance: Types of maintenance repair organization, Levels of capability, types of organization. (Text 4: 26.4, 26.5, 26.6)
Course Outcomes: After studying this course, students will be able to:

1. Define and analyze the ECG, EEG and BP signals.
2. Discuss the factors to be considered in the measurements of respiratory and audiometric signals.
3. Describe the principle and working of cardiac pacemakers, defibrillators and surgical devices.
4. Describe the principle and working of therapeutic instruments like Dialysis, heart-lung, ventilator, lithotripter and incubators.
5. Interpret the concepts involved with the measurement of man and instruments.
6. Discuss the physiological effects from electric shocks and maintenance of medical equipment’s as per standards.

Question Paper Pattern:

- The question paper will have TEN questions.
- Each full question carry 20 marks
- There will be TWO full questions (with maximum of THREE sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer FIVE full questions, selecting ONE full question from each module.

Textbooks:

B. E. BIOMEDICAL ENGINEERING
Choice Based Credit System (CBCS) and Outcome Based Education (OBE)
SEMESTER - V
Rehabilitation Engineering
(Common to BM & ML)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>18BM/ML55</th>
<th>CIE Marks</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching Hours/week (L:T:P)</td>
<td>2:2:0</td>
<td>SEE Marks</td>
<td>60</td>
</tr>
<tr>
<td>Credits</td>
<td>03</td>
<td>Exam Hours</td>
<td>03</td>
</tr>
</tbody>
</table>

Module 1
Introduction to Rehabilitation:
What is Rehabilitation, Medical Rehabilitation, Preventive Rehabilitation, Impairment, Disability and Handicap, Sociovocational Rehabilitation
Rehabilitation Team: Classification of members, Medical, The Rehabilitation team – The medical team, Physical therapist, Occupational therapist, Prosthetist-Orthotist, Rehabilitation nurse, Speech pathologist, Psychologist and child development Specialist, Horticultural Therapist, Music therapist, Creative Movement Therapist, Dance and play Therapist, Recreational therapist, Biomedical engineer.
(Text 1: Chapter 1, Chapter 2)

Module 2
Therapeutic Exercise Technique: Coordination Exercises, Balance Training, Gait, Pathological Gaits, Gait Training – Crutch Walking: Patterns of Gait, Relaxation exercises, Methods for training Relaxation, Strengthening exercises, Mobilization exercises
Principles in Management of Communication: Communication, Speech, Language, Aphasia, Dysarthria, Speech therapy, Dysphagia, Communication for Visually impaired, Types of visual aids, Writing aids,
(Text 1: Chapter 3, Chapter 5)

Module 3
(Text 1: Chapter 7)

Module 4
Amputation: General Principles of Amputation Surgery, Levels of Amputation in Upper limb and Lower limb, Rehabilitation of Lower limb amputations
(Text 1: Chapter 8)

Module 5
Mobility Aids: Functions, Parallel bars, Walking frames – types, Walking stick, Tripods, Quadripods, Crutches – types, Wheel chairs – parts and maintenance
(Text 1: Chapter 9)

Course Outcomes: After studying this course, students will be able to:
1. Define rehabilitation and explain the composition of rehabilitation team.
2. Discuss the engineering principles of rehabilitation engineering.
3. Apply engineering skills in the development of prosthetic and orthotic devices.
4. Evaluate the orthopedic design and applications.
<table>
<thead>
<tr>
<th>5. Apply the principles of engineering in the development of mobility aids for physically handicap.</th>
</tr>
</thead>
</table>

Question Paper Pattern:
- The question paper will have TEN questions.
- Each full question carry 20 marks
- There will be TWO full questions (with maximum of THREE sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer FIVE full questions, selecting ONE full question from each module.

Textbook:
B. E. BIOMEDICAL ENGINEERING

Choice Based Credit System (CBCS) and Outcome Based Education (OBE)

SEMMESTER - V

VLSI Design
(Common to EI, BM & ML)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>CIE Marks</th>
<th>Teaching Hours/week (L:T:P)</th>
<th>SEE Marks</th>
<th>Exam Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>18EI/BM/ML56</td>
<td>40</td>
<td>2:2:0</td>
<td>60</td>
<td>03</td>
</tr>
</tbody>
</table>

Module -1

Moore’s law, speed power performance, nMOS fabrication, CMOS fabrication: n-well, p-well processes, BiCMOS, Comparison of bipolar and CMOS.

Basic Electrical Properties of MOS And BiCMOS Circuits: Drain to source current versus voltage characteristics, threshold voltage, transconductance.

Module -2

Basic Electrical Properties of MOS And BiCMOS Circuits: nMOS inverter, Determination of pull up to pull down ratio, nMOS inverter driven through one or more pass transistors, alternative forms of pull up, CMOS inverter, BiCMOS inverters, latch up.

Basic Circuit Concepts: Sheet resistance, area capacitance calculation, Delay unit, inverter delay, estimation of CMOS inverter delay, driving of large capacitance loads, super buffers, BiCMOS drivers.

Module -3

MOS and BiCMOS Circuit Design Processes: MOS layers, stick diagrams, nMOS design style, CMOS design style, design rules and layout, \(\lambda \)- based design.

Scaling of MOS Circuits: scaling factors for device parameters, limitations of scaling.

Module -4

Subsystem Design and Layout-1: Switch logic pass transistor, Gate logic inverter, NAND gates, NOR gates, pseudo nMOS, Dynamic CMOS, example of structured design, Parity generator, Bus arbitration, multiplexers, logic function block, code converter.

Subsystem Design and Layout-2: Clocked sequential circuits, dynamic shift registers, bus lines, subsystem design processes, General considerations, 4-bit arithmetic processes, 4-bit shifter.

Module -5

Design Process-Computational Elements: Regularity, design of ALU subsystem, ALU using adders, carry look ahead adders, Multipliers, serial parallel multipliers, Braun array, Bough – Wooley multiplier.

Memory, Register and Aspects of Timing: Three Transistor Dynamic RAM cell, Dynamic memory cell, Pseudo- Static RAM, JK Flip-flop, D Flip-flop circuits, RAM arrays, practical aspects and testability: Some thoughts of performance, optimization and CAD tools for design and simulation.

Course Outcomes: After studying this course, students will able to;
1. Identify the CMOS layout levels, and the design layers used in the process sequence.
2. Describe the general steps required for processing of CMOS integrated circuits.
3. Design static CMOS combinational and sequential logic at the transistor level.
4. Demonstrate different logic styles such as complementary CMOS logic, pass-transistor Logic, dynamic logic, etc.
5. Interpret the need for testability and testing methods in VLSI.

Question Paper Pattern:
- The question paper will have TEN questions.
- Each full question carry 20 marks
- There will be TWO full questions (with maximum of THREE sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
• The students will have to answer FIVE full questions, selecting ONE full question from each module.

<table>
<thead>
<tr>
<th>Textbook:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Reference Books:</th>
</tr>
</thead>
</table>
B. E. BIOMEDICAL ENGINEERING
Choice Based Credit System (CBCS) and Outcome Based Education (OBE)
SEMESTER - V

Signal Conditioning Circuits and Data Acquisition Lab
(Common to EI, BM & ML)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>: 18EI/BM/ML57</th>
<th>CIE Marks : 40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching Hours/week (L:T:P)</td>
<td>: 0:2:2</td>
<td>SEE Marks : 60</td>
</tr>
<tr>
<td>Credits</td>
<td>: 02</td>
<td>Exam Hours : 03</td>
</tr>
</tbody>
</table>

Laboratory Experiments:

Note: Standard design procedure to be adopted
Students should build the circuit using discrete components and ICs (models are not to be used)

1. **To design and implement**
 - Inverting Amplifier and Inverting Attenuator
 - Non-Inverting Amplifier and Voltage Follower

2. **To realize**
 - Full wave Precision rectifier
 - Voltage regulator using IC 723

3. **To design and implement**
 - Butterworth I order Low-pass filter
 - Butterworth II order High-pass filter

4. **To design and implement**
 - RC Phase shift oscillator
 - Wein Bridge oscillator

5. **To realize**
 - ZCD
 - Positive and Negative Voltage level detectors

6. **To design and implement**
 - Astable Multivibrator using 555 timer
 - Mono-stable Multivibrator using 555 timer

7. **To realize**
 - Sample and Hold circuit using discrete components

8. **To realize**
 - Programmable Gain Amplifier using Analog Mux

9. **To design and implement**
 - 4 bit R-2R DAC using discrete components

10. **To design and implement**
 - 8-bit DAC using IC (DAC 0800)

11. **To design and implement**
 - 8-bit ADC using IC (ADC 0809)

12. **To design and implement**
 - 3 bit Flash ADC using ICs

Course Outcomes: After studying this course, students will be able to;

1. Sketch/draw circuit schematics, construct circuits on breadboards, analyze and troubleshoot circuits containing Op-amps, resistors, diodes, capacitors and independent sources.
2. Memorize and reproduce the manufacturer's data sheets of IC 555 timer, IC µa741 op-amp and data converters like IC ADC 0800 and IC DAC 0809.
3. Design and evaluate analog integrated circuits like Amplifiers, Oscillators, Active filters.
Precision Rectifiers and Voltage level detectors, and compare the experimental results with theoretical values.

4. Demonstrate and analyze the working of Sample-Hold, Programmable gain amplifier and Analog Multiplexer circuits in data acquisition system.

5. Design and evaluate different resolution data converters using discrete components and ICs.

Conduct of Practical Examination:

1. All laboratory experiments are to be included for practical examination.
2. Students are allowed to pick one experiment from the lot.
3. Strictly follow the instructions as printed on the cover page of answer script for breakup of marks.
4. Change of experiment is allowed only once and 15% Marks allotted to the procedure part to be made zero.

Reference Books:

B. E. BIOMEDICAL ENGINEERING
Choice Based Credit System (CBCS) and Outcome Based Education (OBE)
SEMESTER - V
Clinical Instrumentation and Signal Processing Lab

<table>
<thead>
<tr>
<th>Course Code</th>
<th>18BML58</th>
<th>CIE Marks</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching Hours/week</td>
<td>0:2:2</td>
<td>SEE Marks</td>
<td>60</td>
</tr>
<tr>
<td>Credits</td>
<td>02</td>
<td>Exam Hours</td>
<td>03</td>
</tr>
</tbody>
</table>

Title of the Experiments

Clinical Instrumentation

1. Design and Test the bio-potential amplifiers for ECG/ or EEG/ or EMG
2. Design and Test the Notch Filter for 50 Hz and 60 Hz.
3. Testing and analysis of the following by hardware circuit/simulation
 (i) DC Defibrillator (ii) Pacemaker
4. Acquisition of ECG: (i) Single lead (ii) Three lead, and (iii) 12-Leads. Analysis of the acquired ECG in amplitude, time and frequency domain.
5. Acquisition and analysis (time & frequency) of EEG.
6. Acquisition and analysis of Lung Volumes and Lung Capacities using Spirometer.
7. Quantification and assessment of hearing ability using audiometer

Signal Processing: USING MATLAB / SCILAB/OCTAVE

1. Verify the Sampling theorem.
2. Determine linear convolution, Circular convolution and Correlation of two given sequences. Verify the result using theoretical computations.
3. Determine the linear convolution of two given point sequences using FFT algorithm.
4. Determine the spectrum of the given sequence using FFT.
5. Design and test FIR filter using Windowing method (Hamming Hanning and Rectangular window) for the given order and cut-off frequency.
6. Design and test Butterworth 1st and 2nd order low & high pass filter.

Course Outcomes: After studying this course, students will able to;

1. Design and verify the different bio amplifiers & filters.
2. Acquire and analyze the ECG, EEG and respiratory signals
3. Analyze the visual ability and audibility using appropriate instruments.
4. Demonstrate the working of different diagnostic and therapeutic hospital equipment’s.
5. Install and operate different types of hospital instruments.
6. Apply and analyze the signal processing algorithms on standard signals.

Conduct of Practical Examination:

1. All laboratory experiments are to be included for practical examination.
2. Students are allowed to pick one experiment from the lot.
3. Strictly follow the instructions as printed on the cover page of answer script for breakup of marks.
4. Change of experiment is allowed only once and 15% Marks allotted to the procedure part to be made zero.
B. E. COMMON TO ALL PROGRAMMES
Choice Based Credit System (CBCS) and Outcome Based Education (OBE)

SEMESTER – V

ENVIRONMENTAL STUDIES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>CIE Marks</th>
<th>SEE Marks</th>
<th>Exam Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>18CIV59</td>
<td>40</td>
<td>60</td>
<td>02</td>
</tr>
</tbody>
</table>

Module - 1
Ecosystems (Structure and Function): Forest, Desert, Wetlands, Riverine, Oceanic and Lake.
Biodiversity: Types, Value; Hot-spots; Threats and Conservation of biodiversity, Forest Wealth, and Deforestation.

Module - 2
Natural Resource Management (Concept and case-studies): Disaster Management, Sustainable Mining, Cloud Seeding, and Carbon Trading.

Module - 3
Environmental Pollution (Sources, Impacts, Corrective and Preventive measures, Relevant Environmental Acts, Case-studies): Surface and Ground Water Pollution; Noise pollution; Soil Pollution and Air Pollution.
Waste Management & Public Health Aspects: Bio-medical Wastes; Solid waste; Hazardous wastes; E-wastes; Industrial and Municipal Sludge.

Module - 4
Global Environmental Concerns (Concept, policies and case-studies): Ground water depletion/recharging, Climate Change; Acid Rain; Ozone Depletion; Radon and Fluoride problem in drinking water; Resettlement and rehabilitation of people, Environmental Toxicology.

Module - 5
Field work: Visit to an Environmental Engineering Laboratory or Green Building or Water Treatment Plant or Waste water treatment Plant; ought to be Followed by understanding of process and its brief documentation.

Course Outcomes: At the end of the course, students will be able to:
- CO1: Understand the principles of ecology and environmental issues that apply to air, land, and water issues on a global scale,
- CO2: Develop critical thinking and/or observation skills, and apply them to the analysis of a problem or question related to the environment.
- CO3: Demonstrate ecology knowledge of a complex relationship between biotic and abiotic components.
- CO4: Apply their ecological knowledge to illustrate and graph a problem and describe the realities that managers face when dealing with complex issues.

Question paper pattern:
- The Question paper will have 100 objective questions.
- Each question will be for 01 marks
- Student will have to answer all the questions in an OMR Sheet.
- The Duration of Exam will be 2 hours.

### Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year

Textbook/s

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Environmental Studies</td>
<td>S M Prakash</td>
<td>Pristine Publishing House, Mangalore</td>
<td>3rd Edition 2018</td>
</tr>
<tr>
<td>3</td>
<td>Environmental Studies – From Crisis to Cure</td>
<td>R Rajagopalan</td>
<td>Oxford Publisher</td>
<td>2005</td>
</tr>
</tbody>
</table>

Reference Books

|---|---|-----------------|----------------------------|------------------|
B. E. BIOMEDCAL ENGINEERING
Choice Based Credit System (CBCS) and Outcome Based Education (OBE)
SEMESTER - VI

Analog and Digital Communication Systems
(Common to EI, BM & ML)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>18EI/BM/ML61</th>
<th>CIE Marks</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching Hours/week (L:T:P)</td>
<td>4:0:0</td>
<td>SEE Marks</td>
<td>60</td>
</tr>
<tr>
<td>Credits</td>
<td>04</td>
<td>Exam Hours</td>
<td>03</td>
</tr>
</tbody>
</table>

Module -1
Introduction to analog and Digital Communication, Historical Background and Applications.
Amplitude Modulation: Amplitude Modulation, Virtues, Limitations, and Modifications of AM, DSBSC Modulation, Costas Receiver, Single Sideband Modulation, Vestigial Sideband Modulation, Theme Examples. (Text 1:1.1, 1.2, 3.1, 3.2, 3.3, 3.4, 3.6, 3.7, 3.9)

Module -2
Angle Modulation: Basic Definitions, Properties of Angle-Modulated Waves, Relationship between PM and FM Waves, NBFM, WBFM, Transmission Bandwidth of FM Waves, Generation of FM waves, Demodulation of FM Signals, Theme Example. (Text 1: Chapter 4)

Module -3
Pulse Modulation: Transition from Analog to Digital Communications: Sampling Process, PAM, Completing the Transition from Analog to Digital, Quantization Process, PCM, Delta Modulation, Theme Examples. (Text 1: 5.1, 5.2, 5.4, 5.5, 5.6, 5.7, 5.10)

Module -4
[Note: Excluding Computer Experiments in all the above Modules]

Module -5
Wireless Personal Area Networks (WPAN): Network Architecture, WPAN Components, WPAN Technologies and protocols (Bluetooth & Zigbee), WPAN Applications. (Text 2: 4.1, 4.2, 4.3, 4.4, 4.5)

Course Outcomes: After studying this course, students will be able to:
1. Explain the basics concepts of analog modulation techniques.
2. Discuss the basics concepts of digital modulation techniques.
3. Describe the basics concepts of digital data and pulse communication.
4. Explain and analyze different digital modulation techniques.
5. Describe different wireless area networks and their applications.

Question Paper Pattern
- The question paper will have TEN questions.
- Each full question carry 20 marks
- There will be TWO full questions (with maximum of THREE sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer FIVE full questions, selecting ONE full question from each module.
<table>
<thead>
<tr>
<th>Textbooks:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Reference Books:</th>
</tr>
</thead>
</table>
B. E. BIOMEDICAL ENGINEERING
Choice Based Credit System (CBCS) and Outcome Based Education (OBE)
SEMESTER - VI

Medical Image Processing
(Common to BM & ML)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>CIE Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>18BM/ML62</td>
<td>40</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teaching Hours/week (L:T:P)</th>
<th>SEE Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>4:0:0</td>
<td>60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Credits</th>
<th>Exam Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>04</td>
<td>03</td>
</tr>
</tbody>
</table>

Module - 1
Introduction: Background, Examples of fields that use DIP, Fundamental steps in Digital Image Processing (DIP), Components of DIP system, Image sensing and acquisition, A simple image formation model, Image sampling and quantization. Basic relationship between pixels, Colour image processing fundamentals and models.

Text: Chapter 1, 2.3, 2.4, .2.5, 6.1, 6.2

Module - 2

Text: 3.1, 3.2, 3.3, 2.6.1, 2.6.2, 2.6.3, 2.6.4, 3.4, 3.5, 3.6

Module - 3
Image Enhancement In Frequency Domain: Background, 2D-Discrete Fourier Transform and its inverse, Basic properties of the 2D-Discrete Fourier Transform, Basicsof filtering in the frequency domain.

Image smoothing using frequency domain filters – Ideal lowpass filters, Butterworth lowpass filters, Gaussian lowpass filters; Image sharpening using frequency domain filters – Ideal highpass filters, Butterworth highpass filters, Gaussian highpass filters, Homomorphic filtering.

Text: 4.1, 4.2, 4.5.5, 4.6, 4.7,4.8, 4.9

Module - 4

Text: 5.1, 5.2, 5.3.1, 5.3.2, 8.1, 8.2.1, 8.2.3, 8.2.4, 8.2.5

Module - 5
Image Segmentation: Fundamentals, Point detection, Line detection, Edge models, Edge detection, Canny edge detector, Thresholding, Region based segmentation.

Text: 10.1, 10.2.1 – 10.2.6, 10.3, 10.4

Course Outcomes: After studying this course, students will be able to,
1. Define the general terminology of digital image processing.
2. Identify the need for image transforms and their types both in spatial and frequency domain.
3. Identify different types of image degradation and apply restoration techniques.
4. Describe image compression models and learn image compression techniques.
5. Explain and apply various methodologies for image segmentation.
6. Implement image processing and analysis algorithms.
Note: It is suggested to give assignments / hands-on-experience on the above image processing concepts using Matlab / C programming on medical images like x-ray / CT / MRI.

<table>
<thead>
<tr>
<th>Question Paper Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>The question paper will have TEN questions.</td>
</tr>
<tr>
<td>Each full question carry 20 marks.</td>
</tr>
<tr>
<td>There will be TWO full questions (with maximum of THREE sub questions) from each module.</td>
</tr>
<tr>
<td>Each full question will have sub questions covering all the topics under a module.</td>
</tr>
<tr>
<td>The students will have to answer FIVE full questions, selecting ONE full question from each module.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Textbook:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Reference Books:</th>
</tr>
</thead>
</table>
B. E. BIOMEDICAL ENGINEERING
Choice Based Credit System (CBCS) and Outcome Based Education (OBE)
SEMESTER - VI

JAVA Programming
(Common to EI, BM & ML)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>CIE Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>18EI/BM/ML63</td>
<td>40</td>
</tr>
<tr>
<td>Teaching Hours/week (L:T:P)</td>
<td>SEE Marks</td>
</tr>
<tr>
<td>4:0:0</td>
<td>60</td>
</tr>
<tr>
<td>Credits</td>
<td>Exam Hours</td>
</tr>
<tr>
<td>04</td>
<td>03</td>
</tr>
</tbody>
</table>

Course Learning Objectives: This course will enable students to

- Understand object oriented programming concepts, and apply them in solving problems.
- Set up Java JDK environment to create, debug and run simple Java programs.
- Introduce the concepts of exception handling and multithreading.
- Introduce the design of Graphical User Interface using applets and swing controls.

Module -1
Object Oriented Programming and JAVA: Object Oriented Paradigm, basic concepts, benefits and applications of OOPs. JAVA history and features, How java differs from C and C++, JAVA and Internet, JAVA and World Wide Web, Web browsers, JAVA support systems, JAVA environment. JAVA program structure, Tokens, Statements, JAVA Virtual Machine.

Overview of JAVA Language: Simple Java Program, Math functions, An application with two classes, Java program structure, Java Tokens, Java Statement, Implementing a Java Program, Java Virtual Machines, Command and Line Arguments, Programming Style.

Module -2
Constants, Variables, Data Types: Declaration and scope of Variables, Symbolic constants, Type Casting, Standard Default values.

Module 3
Classes, Objects and Methods: Class definition and declaration, Creating Object, Accessing Class Members, Constructors, Methods Overloading, Static Members, Nesting Methods, Inheritance, Overriding Methods, Final Variables and Methods, Final Classes, Finalizer Methods, Abstract Methods and Classes, Visibility Control.

Arrays, Strings and Vectors: One and two dimensional arrays, Strings, Vectors, Wrapper Classes

Module -4
Interfaces: Definition, Extending and Implementing Interfaces, Accessing Interface variables.

Packages: JAVA API Packages, Using System packages, Naming conventions, Creating, Accessing and Using a package, Adding a class to a Package, Hiding Classes.

Multithreaded Programming: Creating and Extending Thread Class, Stopping, Blocking and Life Cycle of Thread, Using Thread Methods, Thread Exceptions and Priority, Synchronization, Implementing runnable Interface.

Module -5
Course Outcomes: After studying this course, students will be able to
- Explain the object-oriented concepts and JAVA.
- Develop computer programs to solve real world problems in Java.
- Develop multithreaded applications with synchronization.
- Develop applets for web applications.
- Design GUI based applications.

Question Paper Pattern
- The question paper will have TEN questions
- Each full question carries 20 marks
- There will be TWO full questions (with maximum of THREE sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer FIVE full questions, selecting ONE full question from each module.

Textbooks:

Reference Books:
Course Code: 18BM641 **CIE Marks:** 40
Teaching Hours/week (L:T:P): 2:2:0 **SEE Marks:** 60
Credits: 03 **Exam Hours:** 03

Module-1

ICU Equipment’s and Neonatal Equipment: Oxygen concentrators – Capnographs monitoring systems - cardiac monitor, multipara monitor - Advanced defibrillators –internal and external – Intermediate level of suction apparatus – Laryngoscope - Advance level of radiant warmer, phototherapy units - Doppler fetal heart rate device (handheld type), Fetal Tocography, Baby Incubator, Neonatal ventilator

Module-2

Diagnostic Equipment’s: Stereo toxic unit- depth recording system-dot scanners- transcutaneous nerve Stimulator- anesthesia monitor - EEG controlled anesthesia- bio-feedback equipments, Spinal reflex measurements. Basic Blood gas analyzer - Photometer and spectrophotometer - Microtome, osmometer, Lab freezer - PH meter, Optical microscope - Water bath types, Centrifuge (table), Shakers, Lab, laminar air flow units - Lab precision balances, Pippets, Washers, Incubator and Heating unit centrifuge (Flour) – Electrophoresis systems, tissue embedding equipment - Ambulance setup.

Module-3

Surgical Equipment’s: Warmer (Blood and Patient) - tourniquet, insufflators, irrigation unit - Operating microscope - arthroscopic, Operation Theater (OT): Lights, and Patient’s tables - Flow meters (gas & blood), sterilizing units (auto clave), Surgical driller - Sterilizing producers, manifold unit – Central supply of air. Laparoscope, Gastro scope, endoscopes -light sources. Bronchoscope: Video processors, Camera, and Fiber optic cable. Physiological effects of stimulation, galvanic, Faradic and surged types, interferential therapy.

Module-4

Module-5

Course Outcomes: After studying this course, students will able to;
- Describe about various neonatal and ICU equipment’s
- Discuss the use of surgical equipment’s
- Analyze different types Diagnostic devices
- Understand fundamental troubleshooting procedures for biomedical instruments
- Analyze different types troubleshooting techniques.

Question Paper Pattern:
- The question paper will have TEN questions.
- Each full question carry 20 marks
- There will be TWO full questions (with maximum of THREE sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer FIVE full questions, selecting ONE full question from each module.

Textbooks:

REFERENCE BOOKS:
Hospital Design, Planning and Management
(Common to BM & ML)

Module-1
Planning & Building a New Hospital: Role of Hospital in Health Care, Hospital Planning & Design, Guiding principle in Hospital facilities & services, Functional Plans for Hospital construction, Design items, Functional program & design stage, Planning the Hospital building.

Module-2
Effective Hospital Management: Planning, Organization, Directing & Leading, Controlling, Financial Management
Administrative Service: Medical Record, Hospital Infection, Hospital Utilization Statistics, Material Management, Evaluation of Hospital services.

Module-3
Planning & Designing Medical Services: Out Patient service, Emergency service, Clinical laboratories, Radiology services, Radiation Therapy Department, Surgical Department, Nursing Department, Operation Theater, CSSD Nursing services.

Module-4

Module-5
Planning & Design of Supportive Services: Admitting Department, Medical Record Department, Centralized Sterilization & Supply department, Pharmacy Material Management, Food service Department, Laundry & Linen Services, House Keeping & Val entry Department.

Course Outcomes: After studying this course, students will able to;
1. Design and construct the hospital with an effective administration and financial management.
2. Plan and develop an effective hospital supportive system for all types of hospital services.
3. Evaluate the proper functioning and services provided by the hospitals.

Question Paper Pattern:
- The question paper will have TEN questions.
- Each full question carry 20 marks
- There will be TWO full questions (with maximum of THREE sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer FIVE full questions, selecting ONE full question from each module.

Textbook:
Reference Books:

B. E. BIOMEDICAL ENGINEERING

Choice Based Credit System (CBCS) and Outcome Based Education (OBE)

SEMESTER - VI

Medical Device Regulations and Safety

<table>
<thead>
<tr>
<th>Course Code</th>
<th>: 18BM643</th>
<th>CIE Marks : 40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching Hours/week (L:T:P)</td>
<td>: 2:2:0</td>
<td>SEE Marks : 60</td>
</tr>
<tr>
<td>Credits</td>
<td>: 03</td>
<td>Exam Hours : 03</td>
</tr>
</tbody>
</table>

Module -1

Module -2

Module -3

The European Union: European Directives, European Standardization Bodies, European Standards Development Process, Other European Standards Considerations, Conformity Assessment and Testing, European Organization for Testing and Certification, the NVCASE Program The Medical Devices Directives: Definition of a medical device, The Medical Devices Directives process, Choosing the appropriate directive, Identifying the applicable essential requirements, Identification of corresponding harmonized standards, Essential requirements, Classification of the medical devices, identification and choice of a notified body.

Module -4

Module -5

Software and Quality system regulation: Software as a Technology, Domestic Software Regulations, Domestic Software Standards, International Software Regulations, International Software Standards, The Move Toward One Software Standard History of the quality system regulations, Scope, General provisions, Quality system, Design controls, Document controls, Purchasing controls, Identification and traceability, Production and process controls, Acceptance activities, Non-conforming product, Corrective and preventive action

Note: Assignments may be given on the Indian medical device regulations and medical instrument
Course Outcomes: After studying this course, students will be able to:

1. Define and explain the basic concepts of medical device regulations
2. Discuss the global policies on medical device regulations
3. Analyze implications of the regulations
4. Analyze the way design concepts are imbibed in practical scenarios.

Question Paper Pattern

- The question paper will have TEN questions.
- Each full question carries 16 marks.
- There will be TWO full questions (with a maximum of THREE sub-questions) from each module.
- Each full question will have questions covering all the topics under a module.
- The students will have to answer FIVE full questions, selecting ONE full question from each module.

Textbooks:

Reference Books:

1. Medical device regulations: global overview and guiding principles By Michael Cheng, World Health Organization
B. E. BIOMEDCAL ENGINEERING
Choice Based Credit System (CBCS) and Outcome Based Education (OBE)
SEMESTER - VI

Virtual Bio-Instrumentation
(Common to BM & ML)

Course Code : 18BM/ML644 CIE Marks : 40
Teaching Hours/week (L:T:P) : 2:2:0 SEE Marks : 60
Credits : 03 Exam Hours : 03

Module-1
Graphical System Design (GSD): Introduction, GSD model, Design flow with GSD, Virtual Instrumentation, Virtual Instrumentation and traditional instrumentation, Hardware and software in virtual instrumentation, Virtual Instrumentation for test, control and design, GSD using LabVIEW, Graphical programming and textural programming.

Introduction to LabVIEW: Introduction, Advantages of LabVIEW, Advantages of LabVIEW, Software environment, Creating and saving a VI, Front panel toolbar, Block diagram toolbar, Palettes, Shortcut menus, Property dialog boxes, Front panel controls and indicators, Block diagram, Data types, Data flow program, LabVIEW documentation resources, Keyword shortcuts.

Module-2
Modular Programming: Introduction, Modular Programming in LabVIEW, Build a VI front panel and block diagram, ICON and connector pane, Creating an icon, Building a connector pane, Displaying subVIs and express Vis as icons or expandable nodes, Creating subVIs from sections of a VI, Opening and editing subVIs, Placing subVIs on block diagrams, Saving subVIs, Creating a stand-alone application.

Data Acquisition: DAQ software architecture, DAQ assistant, Channels and task configurations, Selecting and configuring a data acquisition device, Components of computer based measurement system.

Module-3

Neuromuscular Electrophysiology (Electromyography): Physiological basis, Experiment set up, Experiment descriptions, Trouble shooting the nerve – Muscle Preparation.

CardiacElectrophysiology (Electrocardiology): Physiological basis, Experiment descriptions.

Cardiopulmonary Applications: Cardiopulmonary measurement system, How the Cardiopulmonary measurement system works, Clinical Significance

Module-4

Module-5
Healthcare Information management Systems:
Medical Informatics: Defining medical informatics, Computers in medicine, ElectronicMedical record, Computerized physician order entry, Decision support. Information Retrieval, Medical Imaging, Patient Monitoring, Medical Education, Medical Simulation. Managing Disparate Information: ActiveX, ActiveX Data Objects(ADO), Dynamic Link Libraries, Database Connectivity, Integrated Dash boards.

Course Outcomes: After studying this course, students will able to:
1. Describe the Graphical System Design approach & basic features and techniques of LabVIEW.
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>Use the Modular Programming concepts for creation of VIs & employ DAQ assistant for configuration of hardware devices.</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Discuss the basic concepts of DAQ Systems, LabVIEW, and BioBench software.</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Describe the LabVIEW and BioBench software for EMG, ECG, and Cardiopulmonary system analysis.</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Discuss the Medical Device Development Applications for Surgical Video Systems and IV Pumps.</td>
<td></td>
</tr>
</tbody>
</table>

Note: Wherever possible students should be given appropriate hands on training with Virtual Instrumentation LabVIEW software.

Question Paper Pattern:
- The question paper will have TEN questions.
- Each full question carry 20 marks
- There will be TWO full questions (with maximum of THREE sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer FIVE full questions, selecting ONE full question from each module.

Textbooks:
Choice Based Credit System (CBCS) and Outcome Based Education (OBE)
SEMESTER - VI

Biomedical Transducers and Instrumentation
(Common to BM & ML)

Course Code : 18BM/ML651 CIE Marks : 40
Teaching Hours/week (L:T:P) : 2:2:0 SEE Marks : 60
Credits : 03 Exam Hours : 03

Course Learning Objectives: This course will enable the students to
• Gain the knowledge of working principle and construction details of Biomedical Transducers.
• Acquire the knowledge of transducer applications to access the biological signals.
• Access the performance of various Biomedical Transducers.

Module -1
Fundamental Concepts and Basic Transducers: Introduction, Classification of Transducers, Measurement, Signals and Noise in the measurement, Measurement, signals and noise, signal to noise ratio, different types of noise. Characteristics of Measurement system-Transducer and measurement system, static characteristics, dynamic characteristics, standard and calibration, accuracy and error.

Module -2
Bioelectric Signals and Electrodes: Sources of Biomedical Signals, Origin of Bioelectric Signals, Electrocardiogram (ECG), Electroencephalogram (EEG), Electromyogram (EMG), Electrooculogram (EOG), Electroretinogram (ERG), Recording Electrodes– Electrode-tissue interface, Electrolyte-Skin interface, polarization, skin contact impedance, motion artifacts, Silver-Silver Chloride electrodes, Electrodes for ECG, Electrodes for EEG, Electrodes of EMG, Electrical conductivity of electrode jellies and creams, microelectrodes.

Module -3
Pressure Measurement: Pressure Transducers-LVDT pressure transducers and Strain gauge pressure transducers. Physiological pressure ranges and measurement sites, Direct pressure measurement-catheters for pressure measurement, diaphragm displacement transducers, catheter tip pressure transducers, implantable pressure transducers and pressure telemetering capsules. Indirect pressure measurement- Indirect measurement of systolic, diastolic, and mean blood pressure, Detection of Kortokoff sounds.

Module -4

Module -5

Course Outcomes: After studying this course, students will able to:
1. Understand the working principle and construction details of Transducers.
2. Improve the measurement techniques through different approach.
3. Practically can implement the technology in measurement field.

Question Paper Pattern:
- The question paper will have TEN questions.
- Each full question carry 20 marks.
- There will be TWO full questions (with maximum of THREE sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer FIVE full questions, selecting ONE full question from each module.

Textbooks:

Reference Books:

2. Transducers and Instrumentation -D. V. S. Murty Prentice Hall India Pvt ltd. 2nd Edition
Medical Imaging Systems

Course Code: 18BM/ML652
CIE Marks: 40
Teaching Hours/week (L:T:P): 2:2:0
SEE Marks: 60
Credits: 03
Exam Hours: 03

Module 1

X-Ray Diagnostic Methods: Conventional X-ray radiography, Fluoroscopy, Angiography, Mammography and Xeroradiography.

Computed Tomography: Conventional tomography, Computed tomography – Projection function, Algorithms for image reconstruction, CT number, Spiral CT. Recent developments – Digital radiography, Digital subtraction angiography (DSA), Dynamic spatial reconstructor (DSR).

Module 2
Ultrasound Imaging: Fundamentals of acoustic propagation - Characteristic impedance, Intensity, Reflection and refraction, Attenuation, Doppler effect, Generation and detection of Ultrasound-Piezoelectric effect, Ultrasonic transducers, Axial and Lateral resolution, Focusing, Arrays.

Ultrasonic Diagnostic Methods: Pulse echo systems- Amplitude mode (A-mode), Brightness mode (B-mode), Motion mode (M-mode), Doppler methods, Duplex imaging, Tissue characterization, Colour Doppler flow imaging, Image characteristics – Ultrasonic texture or speckle, Speckle reduction, Compensation of phase aberration, Biological effects of ultrasound.

Module 3

Module 4
Basics of Magnetic Resonance Imaging: Fundamentals of nuclear magnetic resonance- Angular momentum, magnetic dipole moment, magnetization, Larmor frequency, Free induction decay (FID), Fourier spectrum of the NMR signal, Spin density, Relaxation times, Pulse sequences.

MRI System & Imaging Methods: Introduction, Magnet, NMR Coil/Probe, Transmitter, Receiver, Data acquisition. Imaging Methods- Introduction, slice selection, frequency encoding, phase encoding, Spin-Echo imaging- Gradient echo imaging, Characteristics of MRI images- Spatial resolution, image contrast. Biological effects of magnetic fields- Static magnetic fields, Radio-frequency fields, Gradient magnetic fields, Imaging safety, Functional MRI (brief introduction only).

Module 5
Thermal Imaging: Medical thermography, Physics of thermography, Infrared detectors, Thermographic equipment, Quantitative medical thermography, Pyroelectric vidicon camera, Thermal camera based on IR sensor with digital focal plane array.

Advances in Medical Imaging: Image guided intervention- Introduction, Stereotactic neurosurgery, Stereotactic neurosurgery based on digital image volumes- image acquisition, planning and transfer.
Intraoperative Imaging - Intraoperative diagnostic imaging, transfer by matching preoperative with intraoperative images, augmented reality.

Course Outcomes: After studying this course, students will be able to:
1. Describe the fundamentals of x-ray radiography and computed tomography, and analyze the system requirements.
2. Explain principles of ultrasound imaging and diagnostic methods and analyze the system requirements.
3. Discuss the fundamentals of radionuclide imaging, MRI, thermal imaging and analyze the system requirements.
4. Describe the concepts of image Guided Intervention and image guided surgery.
5. Design and develop prototype of simple medical imaging system.

Question Paper Pattern:
- The question paper will have TEN questions.
- Each full question carries 20 marks.
- There will be TWO full questions (with maximum of THREE sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer FIVE full questions, selecting ONE full question from each module.

Textbooks:

Reference Books:
Module 1

Introduction to Rehabilitation:

What is Rehabilitation, Medical Rehabilitation, Preventive Rehabilitation, Impairment, Disability and Handicap, Sociovocational Rehabilitation

Rehabilitation Team: Classification of members, Medical, The Rehabilitation team – The medical team, Physical therapist, Occupational therapist, Prosthetist-Orthotist, Rehabilitation nurse, Speech pathologist, Psychologist and child development Specialist, Horticultural Therapist, Music therapist, Creative Movement Therapist, Dance and play Therapist, Recreational therapist, Biomedical engineer.

(Text 1: Chapter 1, Chapter 2)

Module 2

Therapeutic Exercise Technique: Coordination Exercises, Balance Training, Gait, Pathological Gaits, Gait Training – Crutch Walking: Patterns of Gait, Relaxation exercises, Methods for training Relaxation, Strengthening exercises, Mobilization exercises

Principles in Management of Communication: Communication, Speech, Language, Aphasia, Dysarthria, Speech therapy, Dysphagia, Communication for Visually impaired, Types of visual aids, Writing aids,

(Text 1: Chapter 3, Chapter 5)

Module 3

(Text 1: Chapter 7)

Module 4

Amputation: General Principles of Amputation Surgery, Levels of Amputation in Upper limb and Lower limb, Rehabilitation of Lower limb amputations

Prosthetics: Classification, Components of Prosthesis, Upper limb Prosthetics – Terminal Devices, Myoelectric Prosthesis, Lower extremity Prosthesis – Transfemoral prosthesis, Prosthesis for hip disarticulation.

(Text 1: Chapter 8)

Module 5

Mobility Aids: Functions, Parallel bars, Walking frames - types, Walking stick, Tripods, Quadripods, Crutches - types, Wheel chairs – parts and maintenance

(Text 1: Chapter 9)

Course Outcomes:

After studying this course, students will be able to:

1. Define rehabilitation and explain the composition of rehabilitation team.
2. Discuss the engineering principles of rehabilitation engineering.
3. Apply engineering skills in the development of prosthetic and orthotic devices.
4. Evaluate the orthopedic design and applications.
5. Apply the principles of engineering in the development of mobility aids for physically handicap.
Question Paper Pattern:
- The question paper will have TEN questions.
- Each full question carry 20 marks
- There will be TWO full questions (with maximum of THREE sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer FIVE full questions, selecting ONE full question from each module.

Textbook:
<table>
<thead>
<tr>
<th>Title of the Experiments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Display of an image, negative of an image.</td>
</tr>
<tr>
<td>2. Contrast stretching of a low contrast image.</td>
</tr>
<tr>
<td>3. Display of a histogram, and histogram equalization.</td>
</tr>
<tr>
<td>4. Bit plane slicing of an image.</td>
</tr>
<tr>
<td>5. Image enhancement by Intensity/Gray level slicing.</td>
</tr>
<tr>
<td>6. Implementation of FT for an image.</td>
</tr>
<tr>
<td>7. Implementation of High pass, Low pass filtering.</td>
</tr>
<tr>
<td>8. Mean and Median filtering of an image.</td>
</tr>
<tr>
<td>10. Image Rotation (Clockwise and anticlockwise) and Flipping (Horizontal and Vertical)</td>
</tr>
<tr>
<td>11. Canny edge detection.</td>
</tr>
<tr>
<td>12. Image compression by DCT.</td>
</tr>
</tbody>
</table>

(Note: It is suggested to carry out the above experiments by Matlab / C programming on diagnostic images such as x-ray / CT / MRI / Ultrasound)

<table>
<thead>
<tr>
<th>Course Outcomes: After studying this course, students will get hands on exposure to:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Implement and analyze image enhancement techniques.</td>
</tr>
<tr>
<td>2. Implement and analyze Image segmentation and image compression techniques.</td>
</tr>
<tr>
<td>3. Develop and analyze Image processing algorithms in practical applications/case studies.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conduct of Practical Examination:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. All laboratory experiments are to be included for practical examination.</td>
</tr>
<tr>
<td>2. Students are allowed to pick one experiment from the lot.</td>
</tr>
<tr>
<td>3. Strictly follow the instructions as printed on the cover page of answer script for breakup of marks.</td>
</tr>
<tr>
<td>4. Change of experiment is allowed only once and 15% Marks allotted to the procedure part to be made zero.</td>
</tr>
</tbody>
</table>
1) a. Write a java Program to illustrate the creation of variables of basic types and effect of type conversions.
 b. Write a java Program that display the roots of a quadratic equation ax^2+bx=0. Calculate the discriminate D and based on value of D, describe the nature of root.
2) a. Write a java program to demonstrate creation and accessing of objects and methods.
 b. Write a java program to illustrate use of constructor overloading and method overloading.
3) a. Write a java Program to demonstrate the concept of single Inheritance.
 b. Write a java program to implement multi level Inheritance.
4) Write a simple Program on Java to illustrate the implementation of the concept of multiple inheritance using interfaces.
5) a. Write a java program to demonstrate StringMethods used for manipulating strings like accessing, inserting, modifying and appending.
 b. Write a java program to illustrate use of most commonly used wrapper class methods.
6) Write a Java program to implement the concept of importing classes from user defined package and creating packages.
7) Write a Java program using Synchronized Threads, which demonstrates Producer Consumer concept.
8) a. Write a Java program for creation of Java Built-in Exceptions.
 b. Write a Java program for creation of User Defined Exceptions.
9) Complete the following:
 i. Create a package named shape.
 ii. Create some classes in the package representing some common shapes like Square, Triangle, and Circle.
 iii. Import and compile these classes in other program
10) a. Write a Java program to copy bytes from one file to another using FileInputStream and File Output Stream.
 b. Write a Java program to illustrate the process of file concatenation and buffering.
11) Write a Java applet program, which handles keyboard event.
12) Write an Applet that displays —Hello World! (Background color-black, text color-blue and your name in the status window.).
13) Write a Java Program to demonstrate Mouse events.
14) Write programs for using Graphics class
 i. To display basic shapes and fill them
 ii. Draw different items using basic shapes
 iii. set background and foreground colors.

Assignment: Create simple JAVA or Android Calculator console application which performs both basic and scientific operation.

Course Outcome: After the completion of this Laboratory course, students will be able to:
1. To Understand OOPs concepts and basics of Java programming.
2. To Create Java programs using inheritance and polymorphism.
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3.</td>
<td>To Implement error-handling techniques using exception handling and multithreading.</td>
</tr>
<tr>
<td>4.</td>
<td>To Develop GUI using Applets and Swing components.</td>
</tr>
<tr>
<td>5.</td>
<td>Analyze, design and develop solutions to real-world problems applying OOPs concepts through JAVA.</td>
</tr>
</tbody>
</table>

Conduct of Practical Examination:
- All laboratory experiments are to be included for practical examination.
- Students are allowed to pick one experiment from the lot.
- Strictly follow the instructions as printed on the cover page of answer script for breakup of marks.
- Change of experiment is allowed only once and 15% Marks allotted to the procedure part to be made zero.
Mini Project

<table>
<thead>
<tr>
<th>Course Code</th>
<th>CIE Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>18BMMP68</td>
<td>40</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teaching Hours/week (L:T:P)</th>
<th>SEE Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0:0:2</td>
<td>60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Credits</th>
<th>Exam Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>02</td>
<td>03</td>
</tr>
</tbody>
</table>

Mini-project work:
Based on the ability/abilities of the student/s and recommendations of the mentor, a single discipline or a multidisciplinary Mini-project can be assigned to an individual student or to a group having not more than 4 students.

CIE procedure for Mini-project:
(i) **Single discipline:** The CIE marks shall be awarded by a committee consisting of the Head of the concerned Department and two senior faculty members of the Department, one of whom shall be the Guide.

The CIE marks awarded for the Mini-project work, shall be based on the evaluation of project report, project presentation skill and question and answer session in the ratio 50:25:25. The marks awarded for the project report shall be the same for all the batch mates.

(ii) **Interdisciplinary:** Continuous Internal Evaluation shall be group wise at the college level with the participation of all the guides of the college.

The CIE marks awarded for the Mini-project, shall be based on the evaluation of project report, project presentation skill and question and answer session in the ratio 50:25:25. The marks awarded for the project report shall be the same for all the batch mates.

SEE for Mini-project:
(i) **Single discipline:** Contribution to the Mini-project and the performance of each group member shall be assessed individually in the Course Code end examination (SEE) conducted at the department.

(ii) **Interdisciplinary:** Contribution to the Mini-project and the performance of each group member shall be assessed individually in Course Code end examination (SEE) conducted separately at the departments to which the student/s belong to.
Internship: All the students admitted to III year of BE/B.Tech shall have to undergo mandatory internship of 4 weeks during the vacation of VI and VII Course Codes and/or VII and VIII Course Codes. A University examination shall be conducted during VIII Course Code and the prescribed credit shall be included in VIII Course Code. Internship shall be considered as a head of passing and shall be considered for the award of degree. Those, who do not take-up/complete the internship shall be declared fail and shall have to complete during subsequent University examination after satisfying the internship requirements.
Module -1
The nature of biomedical signals, objectives of biomedical signal analysis, difficulties encountered in biomedical signal analysis, Computer aided diagnosis. Text-1: 1.1, 1.3, 1.4, 1.5

Module -2
Filtering for Artifacts Removal : Random noise, structured noise and physiological interference, stationary versus non-stationary processes, typical case study, time domain filters with application: Synchronized averaging, moving-average filters
Frequency domain filters with examples, removal of high frequency noise by Butterworth low pass filters, removal of low frequency noise by Butterworth high pass filter, removal of periodic artifacts by notch and comb filters. Weiner filter.
Text-1: 3.1, 3.1.1, 3.1.2, 3.3, 3.3.1, 3.3.2, 3.3.3, 3.4, 3.4.1, 3.4.2, 3.4.3, 3.5.

Module-3
Basics of signal averaging, Signal averaging as a digital filter, A typical average, Software for signal averaging, Limitations of signal averaging. Text-3: 9.1 to 9.5
Data Acquisition and classification of sleep stages, The Markov model and Markov chains, Dynamics of Sleep-wave Transitions, Hypnogram Model Parameters.
Text-2: 5.1 to 5.4

Module -4
ECG Parameters and their estimation, A review of wiener filtering problem, Principle of an adaptive filter, the steepest descent algorithm, Adoptive noise canceller, Cancellation 60Hz Interference in ECG, Cancelling Donor heart Interference in Heart-transplant ECG, Cancellation of Electrocardiographic signals from the electrical activity of chest muscles, Cancelling of maternal ECG in Fetal ECG, Cancellation of higher frequency noise in electro-surgery.
Text-2: 7.4, 6.1, 6.2, 6.3, 6.5, 6.6.

Module -5
Direct data compression techniques, Direct ECG data compression techniques, Transformation compression techniques, Other data compression techniques, Data compression techniques comparison.
Text-2: 8.1 to 8.5
Note: Assignments can be given on analysis other important biomedical signals like EMG, ERG, EOG, Evoked potentials.

Course Outcomes: After studying this course, students will be able to:
1. Analyze the nature of Biomedical signals and related concepts
2. Apply filters to remove noise from biomedical signals.
3. Apply averaging technique on biomedical signals and extract the features of EEG signals.
4. Analyze event detection techniques for EEG and ECG signals.
5. Apply signal compression techniques on biomedical signals.
6. Write simple algorithms for biomedical signal processing
Question Paper Pattern

The question paper will have TEN questions.
- Each full question carry 20 marks
- There will be TWO full questions (with maximum of THREE sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer FIVE full questions, selecting ONE full question from each module.

Textbooks:

Reference Books:
B. E. BIOMEDCAL ENGINEERING
Choice Based Credit System (CBCS) and Outcome Based Education (OBE)
SEMESTER - VII

ARM Processor
(Common to EI, BM & ML)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>: 18EI/BM/ML72</th>
<th>CIE Marks</th>
<th>: 40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching Hours/week (L:T:P)</td>
<td>: 2:2:0</td>
<td>SEE Marks</td>
<td>: 60</td>
</tr>
<tr>
<td>Credits</td>
<td>: 03</td>
<td>Exam Hours</td>
<td>: 03</td>
</tr>
</tbody>
</table>

Module -1
ARM Embedded Systems
Introduction, RISC design philosophy, ARM design philosophy, Embedded system hardware - AMBA bus protocol, ARM bus technology, Memory, Peripherals, Embedded system software – Initialization (BOOT) code, Operating System, Applications.

ARM Processor Fundamentals
ARM core dataflow model, registers, current program status register, Pipeline, Exceptions, Interrupts and Vector Table, Core extensions.

Module -2
Introduction to the ARM Instruction set:
Introduction, Data processing instructions, Load - Store instruction, Software interrupt instructions, Program status register instructions, Loading constants, ARMv5E extensions, Conditional Execution.

Module -3
Introduction to the THUMB instruction set:
Introduction, THUMB register usage, ARM – THUMB interworking, Other branch instructions, Data processing instructions, Stack instructions, Software interrupt instructions.

Efficient C Programming:
Overview of C Compilers and optimization, Basic C Data types, C looping structures.

Module -4
Exception and Interrupt Handling:
Exception Handling-ARM Processor Exceptions and Modes, Vector Table, Exception Priorities, Link Register Offset, Interrupts- Interrupt Latency, Basic Interrupt Stack design and implementation, Interrupt Handling Scheme- Non nested Interrupt Handler, Nested Interrupt Handler, Reentrant Interrupt Handler, Prioritized Simple Interrupt Handler, Prioritized Standard Interrupt Handler, Prioritized Direct Interrupt Handler, Prioritized Grouped Interrupt Handler.

Embedded Operating Systems:
Fundamental Components, SLOS Directory Layout, Memory Interrupts and Exceptions handling, scheduler, Context Switch, Device Driver Framework.

Module -5
Caches:
The memory Hierarchy and caches memory -caches and memory management units, Cache Architecture-basic architecture of caches memory, basic operation of cache controller, the relationship between cache and main memory.

Memory Management Units:
Moving from an MPU to an MMU, Virtual memory Working-Defining regions using pages, multitasking and the MMU, Memory organization in a virtual memory system, page tables Translational look aside buffer.

Note: Two or four tutorial classes need to be conducted (in a Course Code) to discuss the Embedded ARM Applications, such as GSM Chip and Bluetooth controller & assignment should be based on applications only.

Course Outcomes: After studying this course, students will be able to:
1. Depict the organization, architecture, bus technology, memory and operation of the ARM microprocessors
2. Employ the knowledge of Instruction set of ARM processors to develop basic Assembly Language Programs
3. Recognize the importance of the Thumb mode of operation of ARM processors and develop C programs for ARM processors
4. Describe the techniques involved in Exception and Interrupt handling in ARM Processors and understand the fundamental concepts of Embedded Operating Systems
5. Develop embedded C programs to interact with Built in Peripherals
6. Design, analyze and write programs using RTOS (MicroC/OS) on ARM based development boards.

Question Paper Pattern
- The Question paper will have TEN questions
- Each full question carry 20 marks
- There will be TWO full questions (with maximum of THREE sub questions) from each module.
- Each full question will have sub questions covering all topics under a module.
- The students will have to answer FIVE full questions, selecting ONE full question from each module.

Textbook:

Reference Books:
B. E. BIOMEDICAL ENGINEERING

Choice Based Credit System (CBCS) and Outcome Based Education (OBE)

SEMESTER - VII

Database Management System in Healthcare
(Common to BM & ML)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>: 18BM/ML731</th>
<th>CIE Marks : 40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching Hours/week (L:T:P)</td>
<td>: 2:2:0</td>
<td>SEE Marks : 60</td>
</tr>
<tr>
<td>Credits</td>
<td>: 03</td>
<td>Exam Hours : 03</td>
</tr>
</tbody>
</table>

Module -1

Database and Database Users: Introduction, Characteristics of the Database Approach, Advantages of Using the DBMS Approach. ([Text Book](#) 2 : 1.1, 1.3, 1.6)

Database System Concepts and Architecture: Data models, Schemas, and Instances, Three – Schema Architecture and Data Independence, Database Languages and Interfaces, Classification of Database Management Systems. ([Text Book](#) 2 : 2.1, 2.2, 2.3, 2.6)

Patient Database: Patient Database strategies for HIS, data acquisition, patient admission, transfer, discharge, evaluation & management. Computer based patient record, clinical decision support systems. ([Text Book](#) 3)

Overview of Database Systems: A Historical Perspective, File Systems versus a DBMS, Describing and Storing Data in a DBMS, Queries in a DBMS, Transaction Management, Structure of a DBMS.([Text Book](#) 1 : 1.2, 1.3, 1.5, 1.6, 1.7, 1.8)

Module -2

Data Modeling using the Entity – Relationship (ER) Model: Using High – Level Conceptual Data Models for Database Design, An Example Database Application; Entity Types, Entity Sets, Attributes and Keys, Relationship types, Relationship Sets, Roles and Structural Constraints, Weak Entity Types, Refining the ER Design for the COMPANY Database, ER Diagrams, Naming Conventions and Design Issues. ([Text Book](#) 2 : 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7)

Relational Model: Relational Model Concepts, Relational Model Constraints and Relational Database Schemas, Update Operations, Transactions, and Dealing with Constraint Violations. ([Text Book](#) 2 : 5.1, 5.2, 5.3)

Relational Algebra and Relational Calculus: Unary Relational Operations: SELECT and PROJECT. ([Text Book](#) 2 : 6.1)

Module -3

Relational Algebra and Relational Calculus: Relational Algebra Operations from Set Theory, Binary Relational Operations: JOIN and DIVISION, Additional Relational Operations. ([Text Book](#) 2 : 6.2, 6.3, 6.4)

SQL – 99: SQL Data Definition and Data Types, Specifying Constraints in SQL, Schema Change Statements in SQL, Basic Queries in SQL, More Complex SQL Queries, INSERT, DELETE and UPDATE Statements in SQL, Specifying Constraints as Assertions and Triggers, Views (Virtual Tables) in SQL, Additional Features of SQL. ([Text Book](#) 2 : 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, 8.8, 8.9)

Module -4

Database Design Theory and Methodology: Informal Design Guidelines for Relation Schemas, Functional Dependencies, Normal Forms Based on Primary Keys, General Definitions of Second and Third Normal Forms, Boyce-Codd Normal Form. ([Text Book](#) 2 : 10.1, 10.2, 10.3, 10.4, 10.5)

Module -5
Overview Of Transaction Management: The ACID Properties, Transactions and Schedules, Concurrent Execution of Transactions, Lock-Based Concurrency Control, Performance of Locking, Transaction Support in SQL, Introduction to Crash Recovery. (Text Book 1 : Chapter 16)

Concurrency Control: 2PL, Serializability and Recoverability, Introduction to Lock Management, Lock Conversions, Dealing with Deadlocks, Specialized Locking Techniques, Concurrency Control without Locking. (Text Book 1 : Chapter 17)

Note: Assignment may be given on the topics on semantic web and natural language processing (NLP) for semantic web, software for the hospital database management.

Course Outcomes: After studying this course, students will be able to:
1. Describe the basic concepts of DBMS, languages, and DBMS architecture.
2. Describe the concept of ER model and Relational Model.
3. Apply the Relational operations and Structured Query Languages for RDBMS.
4. Analyze the data model based on normalization theory.
5. Discuss database transactions management and data recovery from system crash.

Question Paper Pattern:
- The question paper will have TEN questions.
- Each full question consists of 20 marks.
- There will be 2 full questions (with maximum of THREE sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer 5 full questions, selecting one full question from each module.

Textbooks:

Reference Books:
B. E. BIOMEDICAL ENGINEERING
Choice Based Credit System (CBCS) and Outcome Based Education (OBE)
SEMESTER - VII

Ergonomics
(Common to BM & ML)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>CIE Marks</th>
<th>Teaching Hours/week (L:T:P)</th>
<th>SEE Marks</th>
<th>CIE Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>18BM/ML732</td>
<td>40</td>
<td>2:2:0</td>
<td>60</td>
<td>3</td>
</tr>
<tr>
<td>Credits</td>
<td>03</td>
<td></td>
<td>Exam Hours: 03</td>
<td></td>
</tr>
</tbody>
</table>

Module -1
The Design of Work Places: Working heights, Room to grasp and move things, Seating at work.
Heavy Work: Physiological principles, Energy consumptions at work, Limits and norms of energy consumption at work, Organization of heavy work.
Handling loads: Lifting, Carrying a burden.

Module -2
Skilled work: Acquiring skill, Maximum control of skilled movements, Facilitating skilled work.
Mental activity: Uptake of information, Memory, Sustained alertness.
Fatigue: Fatigue in industrial practice, Measuring fatigue.

Module -3
Boredom: Boredom from the standpoint of psychology, Problems of monotonous, repetitive work.
Working hours and eating habits: Flexible and continuous working schedules, Rest pauses, Nutrition and work.
Night work and shift work: Night work and health, Organization of shift work.

Module -4
Man – machine systems: Visual perception, Perception of sound, Display equipment, Controls, Relationship between controls and display instruments.
Light and colour in surroundings: Light measurement and light sources, Physiological requirements of artificial lighting, Lighting for the work place, Daylight, Colour in the work room.

Module -5
Noise and Vibration: Measurement and sources of noise, Damage to hearing through noise, Physiological and psychological effects of noise, Protection against noise, Music and work, Vibrations.
Indoor climate: Thermal regulation in man, Comfort, Dryness of the air during heating periods, Recommendations for comfort indoors, Air pollution and ventilation, Heat in industry.

Course Outcomes:
After studying this course, students will able to:
1. Define the principles of Ergonomics.
2. Describe the work places in order to suit the physical and psychological requirements of the Workers.
3. Employ the principles of Ergonomics in design of work places.
4. Evaluate the work places based on efficiency, accuracy, and safety measures.

Question Paper Pattern:
- The question paper will have TEN questions.
- Each full question consists of 20 marks.
- There will be 2 full questions (with maximum of THREE sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer 5 full questions, selecting one full question from each module.
Textbook:

Reference Books:
Module -1

Biomechanics Applications to Joint Structure and Function: Introduction to Kinematics, Displacement in space, Force vectors and gravity, Linear forces and concurrent forces. Kinetics of rotary and translatory forces. Classes of levers. Close chain force analysis.

Constitutive Equations: Equations for Stress and Strain, Non-viscous fluids, Newtonian viscous fluids, Elastic solids. Visco-elasticity and its applications in biology.

Module -2

Joint Structure and Function: Properties of connective tissues; Human Joint design; Joint Function and changes in disease.

Integrated Functions: Kinetics and Kinematics of Postures; Static and Dynamic Postures; Analysis of Standing, Sitting and Lying Postures.

Module -3

Gait Analysis: Gait cycle and joint motion; Ground reaction forces; Trunk and upper extremity motion; internal and external forces, moments and conventions; Gait measurements and analysis.

Force Platform and Kinematic Analysis: Design of force platforms, Integrating force and Kinematic data; linked segment, free-body analysis.

Module -4

Module -5

Rheology of Blood in Microvessels: Fahreus-Lindquisteffect and inverse effect, hematocrit in very narrow tube.

Finite Element Analysis in Biomechanics: Model creation, Solution, Validation of results and applications of FEA.

Course Outcomes: After studying this course, students will be able to:

1. Analyze the types of forces applied to joints & derive the basic constitutive equations for solid and liquid bio-elements.
2. Describe the properties, structures and functions of human joints for normal & diseased.
3. Analyze static & dynamic postures, gait, integrating force and kinematic data.
4. Develop model for bio-fluids and explain their uses.
5. Discuss the rheology of blood in microvessels.

Question Paper Pattern

- The question paper will have TEN questions.
- Each full question carry 16 marks.
- There will be TWO full questions (with maximum of THREE sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
The students will have to answer FIVE full questions, selecting ONE full question from each module.

<table>
<thead>
<tr>
<th>Textbooks:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Reference Books:</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Biomechanics, Structures and Systems - by A. A. Biewener, Sports Publication.</td>
</tr>
</tbody>
</table>
B. E. BIOMEDICAL ENGINEERING

Choice Based Credit System (CBCS) and Outcome Based Education (OBE)

SEMESTER - VII

Biometric Systems
(Common to BM & ML)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>: 18BM/ML734</th>
<th>CIE Marks : 40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching Hours/week (L:T:P)</td>
<td>: 2:2:0</td>
<td>SEE Marks : 60</td>
</tr>
<tr>
<td>Credits</td>
<td>: 03</td>
<td>Exam Hours : 03</td>
</tr>
</tbody>
</table>

Module -1

Introduction to Biometrics: Introduction, Identification Methods, Biometrics, Biometrics Technology Overview, Biometrics technologies: A Comparison, Automatic Identification, Research Issues – Acquisition, Representation, Feature Extraction, Matching, Search, Organization and Scalability, Privacy, Novel Applications. *(Text 1: Chapter 1)*

Module -2

Finger Print Verification: Matching – Verification and Identification, Feature type, Image Processing and Verification, System Issues, Recognition Rate, Multi-modal Biometrics

Face Recognition: Introduction, Approaches, The SHOSLIF. *(Text 1: Chapter 2, Chapter 3)*

Module -3

Hand Geometry Base Verification: Introduction, System Operation, Implementation Issues, Applications.

Recognizing By Iris Patterns: Introduction, Iris Patterns – Complex Phenotypic Features, Statistical Recognition Principle, Decidability of Iris Based personal Identification, Identification versus Verification, Stability of Iris Pattern Overtime. *(Text 1: Chapter 4, Chapter 5)*

Module -4

Retina Identification: Retina/Choroid as Human Descriptor, Background, Technology, Eye Signature, RI Camera, Signal Acquisition and Computing Subsystem, System Operation, Performance.

Key stroke Dynamics Based Authentication: Introduction, Types of Security Attacks, Predicting Human Characteristics, Applications of Keystroke Dynamics using Interkey Times and Hold Times as Features. *(Text 1: Chapter 6, Chapter 10)*

Module -5

Multimodal Biometrics: Introduction, Decision Fusion, Experimental Results.

Biometrics: Identifying Law & Policy Concerns: Introduction, Definition and Advantages, Biometric Applications, Context of Biometrics, Privacy Concerns, Biometrics as Privacy’s Foe-Criticisms, Biometric Centralization vs. Biometric Balkanization. *(Text 1: Chapter 16, Chapter 19)*

Course Outcomes: After studying this course, students will be able to:

1. Explain the general principles of designing biometric-based systems.
2. Analyze various biometric systems, their characteristics and performance.
3. Discuss the online identification biometric techniques.
4. Recognize some of the personal privacy and security implications of biometrics based identification technology.
5. Analyze the privacy and security issues of biometrics.
6. Develop simple model of biometric system.

Question Paper Pattern

- The question paper will have TEN questions.
- Each full question carry 20 marks.
- There will be TWO full questions (with maximum of THREE sub questions) from each module.
• Each full question will have questions covering all the topics under a module.
• The students will have to answer FIVE full questions, selecting ONE full question from each module.

Textbook:

Reference Books:
B. E. BIOMEDICAL ENGINEERING
Choice Based Credit System (CBCS) and Outcome Based Education (OBE)
SEMESTER - VII

<table>
<thead>
<tr>
<th>Biostatistics</th>
<th>(Common to BM & ML)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
<td>18BM/ML741</td>
</tr>
<tr>
<td>CIE Marks</td>
<td>40</td>
</tr>
<tr>
<td>Teaching Hours/week (L:T:P)</td>
<td>2:2:0</td>
</tr>
<tr>
<td>SEE Marks</td>
<td>60</td>
</tr>
<tr>
<td>Credits</td>
<td>03</td>
</tr>
<tr>
<td>Exam Hours</td>
<td>03</td>
</tr>
</tbody>
</table>

Module -1

Strategies For Understanding The Meanings Of Data: Introduction, The Ordered array, Grouped Data : The Frequency Distribution, Descriptive Statistics : Measure of Central Tendency, Descriptive Statistics : Measure of Dispersion. (*Text Book 1 : Chapter 2*)

Module -2
Probability: The Basis Of Statistical Inference: Introduction, Two Views of Probability: Objective and Subjective, Elementary Properties of Probability, Calculating the Probability of an Event. (*Text Book 1 : 3.1, 3.2, 3.3, 3.4*)

Module -3
Probabilistic Features Of The Distributions Of Certain Sample Statistics: Introduction, Sampling Distribution, Distribution of the Sample Mean, Distribution of the Difference Between Two Samples Means, Distribution of the Sample Proportion, Distribution of the Difference Between Two Sample Proportions. (*Text Book 1 : Chapter 5*)

Using Sample Data To Make Estimates About Population Parameters: Introduction, Confidence Interval for a Population Mean, The \(t \) Distribution, Confidence Interval for the Difference Between Two Population Means, (*Text Book 1 : 6.1, 6.2, 6.3, 6.4*)

Module -4
Using Sample Data To Make Estimates About Population Parameters: Confidence Interval for a Population Proportion, Confidence Interval for the Difference Between Two Population Proportions, Determination of Sample Size for Estimating Means, Determination of Sample Size for Estimating Proportions, Confidence Interval for the Variance of a Normally Distributed Population, Confidence Interval for the Ratio of the Variances of Two Normally Distributed Populations. (*Text Book 1 : 6.5, 6.6, 6.7, 6.8, 6.9, 6.10*)

Module -5
Course Outcomes: After studying this course, students will be able to:
1. Describe the basic statistical terms, concepts, procedures and statistical measures.
2. Apply probability concepts and probability distributions for statistical inferences.
3. Apply sampling distribution concepts and estimation procedures for population parameters.
4. Select and apply appropriate hypotheses tests for statistical analysis.

Question Paper Pattern:
- The question paper will have TEN questions.
- Each full question consists of 20 marks.
- There will be 2 full questions (with maximum of THREE sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer 5 full questions, selecting one full question from each module.

Textbook:

Reference Books:
B. E. BIOMEDICAL ENGINEERING
Choice Based Credit System (CBCS) and Outcome Based Education (OBE)
SEMESTER - VII
Lasers and Optical Fibers in Medicine
(Common to BM & ML)
Course Code : 18BM/ML742 CIE Marks : 40
Teaching Hours/week (L:T:P) : 2:2:0 SEE Marks : 60
Credits : 03 Exam Hours : 03

Module -1
Applications Of Lasers In Therapy & Diagnosis: Introduction, laser assisted diagnosis and therapy-fundamentals, interaction of laser beams and materials-principles (except 3.3.4), laser interaction with tissue-principles, laser assisted diagnostics-principles, applications of lasers in diagnosis and imaging-advances, laser surgery and therapy-principles photo-thermal & photomechanical mechanisms, thermal interaction between laser and tissue-advances.

Module -2
Single Optical Fibers: Introduction, historical background, optical fibers-fundamentals, light transmission in optical fibers-principles, optical properties of optical fibers-advances, fabrication of optical fibers-principles, optical fibers for UV, visible, IR light-principles, power transmission through optical fibers-principles, modified fiber ends and tips-principles, fiber lasers advances.

Module -3
Optical Fiber Bundles: Introduction, non-ordered fiber-optic bundles for light guides-fundamentals & principles, ordered fiber-optic bundles for imaging devices-fundamentals & principles, fiber-scopes and endoscopes fundamentals, fiber optic imaging systems-advances.

Module -4
Endoscopy: Introduction, endoscopic imaging systems-fundamentals, principles, advances, endoscopic diagnostics-advances, endoscopic therapy fundamentals, endoscopic ultrasound imaging-principles.

Module -5

Course Outcomes: After studying this course, students will be able to:
1. Explain the basics and principles of LASERS in Medicine.
2. Discuss the fundamentals and properties of optical fibers for UV, IR, power transmission and advancement.
3. Describe the working of optical fibre bundles for imaging devices applying the light guided fundamentals & principles.
4. Explain and demonstrate the working of endoscopic therapy, diagnostic & imaging principles.
5. Outline the clinical applications of fiber optic Lasers systems.

Question Paper Pattern
- The question paper will have TEN questions.
- Each full question carry20 marks.
- There will be TWO full questions (with maximum of THREE sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer FIVE full questions, selecting ONE full question from each module.
<table>
<thead>
<tr>
<th>Textbook:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Lasers and Optical Fibers in</td>
</tr>
<tr>
<td>Medicine - by Abraham Katzir,</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reference Books:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Lasers in Medicine - by Ronal</td>
</tr>
</tbody>
</table>
Module- 1

Medical Informatics: Aim and scope, salient feature, Introduction, history, definition of medical informatics, bio-informatics, online learning, introduction to health informatics, prospectus of medical informatics.

Hospital Management And Information Science: Introduction, HMIS: need, Benefits, capabilities, development, functional areas. Modules forming HMIS, HMIS and Internet, Pre-requisites for HMIS-client server technology, PACS, why HMIS fails, health information system, disaster management plans, advantages of HMIS. **Text 1**: (Section I - 1 and 2, Section II-3)

Module-2

Hospital Management And Information Systems-Structure And Functions: Central Registration Module, OPD / Consultant Clinic / Polyclinic Module, Indoor Ward Module, Patient Care Module, Procedure Module, Diet Planning Module, MLC Register Module, Pathology Laboratory Module, Blood Bank Module, Operation Theatre Module, Medical Stores Module, Pharmacy Module, Radiology Module, Medical Records Index Module, Administration Module, Personal Registration Module, Employee Information Module, Financial modules, Health & Family Welfare, Medical Examination, Account Billing, Medical Research, Communication, General Information. **Text 1**: (Section II-6)

Module–3

Computer Assisted Medical Education: CAME, Educational software, Simulation, Virtual Reality, Tele-education, Tele-mentoring.

Computer Assisted Patient Education: CAPE, patient counseling software. Computer assisted surgery (CAS), Limitations of conventional surgery, 3D navigation system, intra-operative imaging for 3D navigation system, merits and demerits of CAS. **Text 1**: (Section III – 7 & 8)

Module–4

Telecommunication Based Systems: Tele-Medicine, Need, Advantages, Technology- Materials and Methods, Internet Tele-Medicine, Applications.

Tele-Surgery: Tele-surgery, Robotic surgery, Need for Tele-Surgery, Advantages, Applications. **Text 1**: (Section V- 13 & 14)

Module–5

Knowledge Based And Expert Systems: Introduction, Artificial Intelligence, Expert systems, need for Expert Systems, materials and methods- knowledge representation & its methods, production rule systems, algorithmic method, OAV, object oriented knowledge, database comparisons, statistical pattern classification, decision analysis, tools, neural networks, advantages of ES, applications of ES. **Text 1**: (Section II – 4)

Note: Assignments may be given on topics, rule based techniques for prediction, SNOMED standards, International classification of Diseases (ICD) codes.

Course Outcomes

After studying this course, students will be able to:

1. Explain the basics and importance of medical informatics in hospital management.
2. Describe the different modalities functions exist in the hospital for effective management.
3. Explain the role of technology both hardware & software in training the medical personalities.
4. Discuss the role of telecommunication, tele-surgery, robotics in healthcare.
5. Explain the decision making concepts used in healthcare and their applications.
6. Apply information and communication technology in healthcare.

Question Paper Pattern:
- The question paper will have TEN questions.
- Each full question consists of 20 marks.
- There will be 2 full questions (with maximum of THREE sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer 5 full questions, selecting one full question from each module.

Textbook:

Reference Books:
Course Learning Objectives

This course will enable the students to:

- Assess the genesis and impact of IoT applications, architectures in real world
- Illustrate diverse methods of deploying smart objects and connect them to network
- Compare different application protocols for IoT
- Infer the role of Security in IoT
- Identify sensor technologies for sensing real world entities and understand the role of IoT in various domains of Industry

Module -1

Introduction and IoT: Introduction to IoT, IoT Ecosystem, IoT Reference model

Text 1-Chapter 1

Module -2

Text 1-Chapter 2

Module -3

IoT Protocols: Protocol Classification, MQTT, XMPP, DDS, AMQP, COAP, Representational State Transfer(REST), Comparison of the Protocols

Text 1-Chapter 3

Module -4

Domain Specific IoT: Introduction, Home automation, Smart Cities, Environment, Retail, Logistics, Agriculture, Health and Life style

Text 1-Chapter 4

Public Safety: Overview of Public Safety, an IoT Blueprint for Public Safety, Emergency Response IoT Architecture, IoT Public Safety Information Processing, School Bus Safety.

Text 2-Chapter 15

Module -5

Text 1-Chapter 5

Note: As a part of assignments, the students (in a group of 3 or 4) advised to carry out mini / hobby project using IoT technology.

Course Outcomes: After studying this course, students will be able to:

- Interpret the impact and challenges posed by IoT networks leading to new architectural models.
- Compare and contrast the deployment of smart objects and the technologies to connect them to
- Appraise the role of IoT protocols for efficient network communication
- Elaborate the need for security in IoT
- Illustrate different sensor technologies for sensing real world entities and identify the applications of IoT in industry

Question Paper Pattern

- The question paper will have TEN questions.
- Each full question carry 20 marks
- There will be TWO full questions (with maximum of THREE sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer FIVE full questions, selecting ONE full question from each module.

Textbooks:

Reference Books
<table>
<thead>
<tr>
<th>Module -1</th>
</tr>
</thead>
<tbody>
<tr>
<td>The nature of biomedical signals, objectives of biomedical signal analysis, difficulties encountered in biomedical signal analysis, Computer aided diagnosis. Text-1: 1.1, 1.3, 1.4, 1.5</td>
</tr>
<tr>
<td>Neurological Signal processing: Brain and its potentials, Electrophysiological origin of Brain waves, EEG signal and its characteristics, EEG analysis, Linear prediction theory, Autoregressive (AR) method, Recursive Estimation of AR parameters, Spectral error measure, Adaptive segmentation. Text-2: 4.1 to 4.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module -2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filtering for Artifacts Removal: Random noise, structured noise and physiological interference, stationary versus non-stationary processes, typical case study, time domain filters with application: Synchronized averaging, moving-average filters</td>
</tr>
<tr>
<td>Frequency domain filters with examples, removal of high frequency noise by Butterworth low pass filters, removal of low frequency noise by Butterworth high pass filter, removal of periodic artifacts by notch and comb filters. Weiner filter. Text-1: 3.1, 3.1.1, 3.1.2, 3.3, 3.3.1, 3.3.2, 3.3.3, 3.4, 3.4.1, 3.4.2, 3.4.3, 3.5.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module -3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basics of signal averaging, Signal averaging as a digital filter, A typical average, Software for signal averaging, Limitations of signal averaging. Text-3: 9.1 to 9.5</td>
</tr>
<tr>
<td>Data Acquisition and classification of sleep stages, The Markov model and Markov chains, Dynamics of Sleep-wave Transitions, Hypnogram Model Parameters. Text-2: 5.1 to 5.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module -4</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECG Parameters and their estimation, A review of wiener filtering problem, Principle of an adaptive filter, the steepest descent algorithm, Adaptive noise canceller, Cancellation 60Hz Interference in ECG, Cancelling Donor heart Interference in Heart-transplant ECG, Cancellation of Electrocardiographic signals from the electrical activity of chest muscles, Cancelling of maternal ECG in Fetal ECG, Cancellation of higher frequency noise in electro-surgery. Text-2: 7.4, 6.1, 6.2, 6.3, 6.5, 6.6.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module -5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct data compression techniques, Direct ECG data compression techniques, Transformation compression techniques, Other data compression techniques, Data compression techniques comparison. Text-2: 8.1 to 8.5</td>
</tr>
<tr>
<td>Note: Assignments can be given on analysis other important biomedical signals like EMG, ERG, EOG, Evoked potentials.</td>
</tr>
</tbody>
</table>

Course Outcomes: After studying this course, students will be able to:
1. Analyze the nature of Biomedical signals and related concepts
2. Apply filters to remove noise from biomedical signals.
3. Apply averaging technique on biomedical signals and extract the features of EEG signals.
4. Analyze event detection techniques for EEG and ECG signals.
5. Apply signal compression techniques on biomedical signals.
6. Write simple algorithms for biomedical signal processing.
Question Paper Pattern
The question paper will have TEN questions.

- Each full question carry 20 marks
- There will be TWO full questions (with maximum of THREE sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer FIVE full questions, selecting ONE full question from each module.

Textbooks:

Reference Books:
Module -1

Introduction: Background, Examples of fields that use DIP, Fundamental steps in Digital Image Processing (DIP), Components of DIP system, Image sensing and acquisition, A simple image formation model, Image sampling and quantization. Basic relationship between pixels, Colour image processing fundamentals and models.

Text: Chapter 1, 2.3, 2.4, 2.5, 6.1, 6.2

Module -2

Image Enhancement in Spatial Domain: Background, Point processing – Image negatives, Log transformations, Power law transformations, Contrast stretching, Intensity level slicing, Bit plane slicing, Histogram processing – Histogram equalization, Histogram matching (specification), Arithmetic/Logic operations – Image subtraction, Image averaging. Fundamentals of spatial filtering, Smoothing spatial filters, Sharpening spatial filters

Text: 3.1, 3.2, 3.3, 2.6.1, 2.6.2, 2.6.3, 2.6.4, 3.4, 3.5, 3.6

Module -3

Image Enhancement In Frequency Domain: Background, 2D-Discrete Fourier Transform and its Inverse, Basic properties of the 2D-Discrete Fourier Transform, Basicsof filtering in the frequency domain.

Image smoothing using frequency domain filters – Ideal lowpass filters, Butterworth lowpass filters, Gaussian lowpass filters; Image sharpening using frequency domain filters – Ideal highpass filters, Butterworth highpass filters, Gaussian highpass filters, Homomorphic filtering.

Text: 4.1, 4.2, 4.5.5, 4.6, 4.7, 4.8, 4.9

Module -4

Image Restoration: Model of the Image degradation/restoration process, Noise models, Restoration using spatial filtering: Mean filters, Order statistic filters - Median filter, Min and Max filters, Midpoint filter.

Image Compression: Fundamentals, Image compression models, Basic compression methods – Huffman coding, Arithmetic coding, LZW coding, Run-length coding.

Text: 5.1, 5.2, 5.3.1, 5.3.2, 8.1, 8.2.1, 8.2.3, 8.2.4, 8.2.5

Module -5

Image Segmentation: Fundamentals, Point detection, Line detection, Edge models, Edge detection, Cannyedgedetector. Thresholding, Region based segmentation.

Text: 10.1, 10.2.1 – 10.2.6, 10.3, 10.4

Course Outcomes:

After studying this course, students will be able to,

1. Define the general terminology of digital image processing.
2. Identify the need for image transforms and their types both in spatial and frequency domain.
3. Identify different types of image degradation and apply restoration techniques.
4. Describe image compression models and learn image compression techniques.
5. Explain and apply various methodologies for image segmentation.
6. Implement image processing and analysis algorithms.
| **Note:** It is suggested to give assignments / hands-on-experience on the above image processing concepts using Matlab / C programming on medical images like x-ray / CT / MRI. |

<table>
<thead>
<tr>
<th>Question Paper Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>• The question paper will have TEN questions.</td>
</tr>
<tr>
<td>• Each full question carry 20 marks.</td>
</tr>
<tr>
<td>• There will be TWO full questions (with maximum of THREE sub questions) from each module.</td>
</tr>
<tr>
<td>• Each full question will have sub questions covering all the topics under a module.</td>
</tr>
<tr>
<td>• The students will have to answer FIVE full questions, selecting ONE full question from each module.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Textbook:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Reference Books:</th>
</tr>
</thead>
</table>
Module- 1

Medical Informatics: Aim and scope, salient feature, Introduction, history, definition of medical informatics, bio-informatics, online learning, introduction to health informatics, prospectus of medical informatics.

Hospital Management And Information Science: Introduction, HMIS: need, Benefits, capabilities, development, functional areas. Modules forming HMIS, HMIS and Internet, Pre-requisites for HMIS-client server technology, PACS, why HMIS fails, health information system, disaster management plans, advantages of HMIS.

Text 1: (Section I - 1 and 2, Section II-3)

Module-2

Hospital Management And Information Systems-Structure And Functions : Central Registration Module, OPD / Consultant Clinic / Polyclinic Module, Indoor Ward Module, Patient Care Module, Procedure Module, Diet Planning Module, MLC Register Module, Pathology Laboratory Module, Blood Bank Module, Operation Theatre Module, Medical Stores Module, Pharmacy Module, Radiology Module, Medical Records Index Module, Administration Module, Personal Registration Module, Employee Information Module, Financial modules, Health & Family Welfare, Medical Examination, Account Billing, Medical Research, Communication, General Information.

Text 1: (Section II-6)

Module–3

Computer Assisted Medical Education: CAME, Educational software, Simulation, Virtual Reality, Tele-education, Tele-mentoring.

Computer Assisted Patient Education: CAPE, patient counseling software. Computer assisted surgery (CAS), Limitations of conventional surgery, 3D navigation system, intra-operative imaging for 3D navigation system, merits and demerits of CAS.

Text 1: (Section III – 7 & 8)

Module–4

Telecommunication Based Systems: Tele-Medicine, Need, Advantages, Technology- Materials and Methods, Internet Tele-Medicine, Applications.

Tele-Surgery: Tele-surgery, Robotic surgery, Need for Tele-Surgery, Advantages, Applications.

Text 1: (Section V- 13 & 14)

Module–5

Knowledge Based And Expert Systems: Introduction, Artificial Intelligence, Expert systems, need for Expert Systems, materials and methods- knowledge representation & its methods, production rule systems, algorithmic method, OAV, object oriented knowledge, database comparisons, statistical pattern classification, decision analysis, tools, neural networks, advantages of ES, applications of ES.

Text 1: (Section II – 4)

Note: Assignments may be given on topics, rule based techniques for prediction, SNOMED standards, International classification of Diseases (ICD) codes.

Course Outcomes:

After studying this course, students will be able to:

1. Explain the basics and importance of medical informatics in hospital management.
2. Describe the different modalities functions exists in the hospital for effective management.
3. Explain the role of technology both hardware & software in training the medical personalities.
4. Discuss the role of telecommunication, tele-surgery, robotics in healthcare.
5. Explain the decision making concepts used in healthcare and their applications.
6. Apply information and communication technology in healthcare.

Question Paper Pattern:
- The question paper will have TEN questions.
- Each full question consists of 20 marks.
- There will be 2 full questions (with maximum of THREE sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer 5 full questions, selecting one full question from each module.

Textbook:

Reference Books:
Write programs in C or Matlab or Scilab:

1. Write a program to Compute Linear & Circular convolution, Cross & Auto correlation using a biomedical signal.
2. Write a program to Compute DFT, FFT, Power spectrum and power spectral density of a biomedical signal.
3. Write a program to Display Static and Moving ECG signal.
4. Write a program to Implement 50Hz notch filter for ECG signal and display PSD.
5. Write a program to Implement IIR filters for ECG (LPF, HPF, BPF)
6. Write a program to Implement Low-Pass FIR filter for ECG
7. Write a program to Implement FIR Filter using Kaiser Window.
8. Write a program to detect QRS complex and measure the heart rate of a given ECG signal
9. Write a program to improve the SNR using signal averaging technique
10. Write a program to obtain the DCT & IDCT of ECG signal
11. Write a program to down sample the given ECG signal
12. Write a program to obtain Adaptive noise cancelling
13. Write a program to compress the data using Turning point & FAN algorithm

Course Outcomes: After studying this course, students will be able to:

1. Apply the signal processing techniques on biomedical signals and evaluate their performance.
2. Develop/Write signal processing algorithms for the analysis of biomedical signals

Conduct of Practical Examination:

- All laboratory experiments are to be included for practical examination.
- Students are allowed to pick one experiment from the lot.
- Strictly follow the instructions as printed on the cover page of answer script for breakup of marks.
- Change of experiment is allowed only once and 15% Marks allotted to the procedure part to be made zero.
PART-A: Conduct the following experiments by writing Assembly Language Program (ALP) using ARM Cortex M3 Registers using an evaluation board/simulator and the required software tool.

1. Write an ALP to multiply two 16 bit binary numbers.
2. Write an ALP to find the sum of first 10 integer numbers.
3. Write an ALP to find factorial of a number.
4. Write an ALP to add an array of 16 bit numbers and store the 32 bit result in internal RAM.
5. Write an ALP to add two 64 bit numbers.
6. Write an ALP to find the square of a number (1 to 10) using look-up table.
7. Write an ALP to find the largest/smallest number in an array of 32 numbers.
8. Write an ALP to arrange a series of 32 bit numbers in ascending/descending order.
9. Write an ALP to count the number of ones and zeros in two consecutive memory locations.
10. Write an ALP to scan a series of 32 bit numbers to find how many are negative.

PART-B: Conduct the following experiments on an ARM CORTEX M3 evaluation board using evaluation version of Embedded 'C' & Keil Uvision-4 tool/compiler.

1. Display “Hello World” message using Internal UART.
2. Interface and Control a DC Motor.
3. Interface a Stepper motor and rotate it in clockwise and anti-clockwise direction.
4. Determine Digital output for a given Analog input using Internal ADC of ARM controller.
5. Interface a DAC and generate Triangular and Square waveforms.
6. Interface a 4x4 keyboard and display the key code on an LCD.
7. Using the Internal PWM module of ARM controller generate PWM and vary its duty cycle.
8. Demonstrate the use of an external interrupt to toggle an LED On/Off.
9. Display the Hex digits 0 to F on a 7-segment LED interface, with an appropriate delay in between.
10. Interface a simple Switch and display its status through Relay, Buzzer and LED.

Note:
1. More weightage should be given for PART-B experiments in the evaluation of Internal Assessment and Laboratory Examinations.
2. Introduction class on instruction set of Cortex M3 LPC1768 need to be conducted before start of hardware experiments.

Conduction of Practical Examination:
1. All laboratory experiments (Part-A + Part-B) are to be included for practical examination.
2. Students are allowed to pick & execute one experiment from each part.
3. Strictly follow the instructions as printed on the cover page of answer script for breakup of marks.
4. Change of experiment is allowed only once and 15% of Marks allotted to the procedure part to be made zero.
Course Outcomes: After studying this course, students will able to;

1. Write ALP for implementation of specific arithmetic or logical operations.
2. Write programs to demonstrate functioning of various devices interfaced to ARM processor.
3. Develop programs for ARM processors to implement real world problems.
4. Design and develop mini projects.
B. E. BIOMEDICAL ENGINEERING
Choice Based Credit System (CBCS) and Outcome Based Education (OBE)
SEMESTER - VII

Project Work Phase -1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>: 18BMP78</th>
<th>CIE Marks : 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching Hours/week (L:T:P)</td>
<td>: 0:0:2</td>
<td>SEE Marks : ---</td>
</tr>
<tr>
<td>Credits</td>
<td>:01</td>
<td>Exam Hours : ---</td>
</tr>
</tbody>
</table>

Project Work Phase-1:
Based on the ability/abilities of the student/s and recommendations of the mentor, a single discipline or a multidisciplinary project can be assigned to an individual student or to a group having not more than 4 students. In extraordinary cases, like the funded projects requiring students from different disciplines, the project student strength can be 5 or 6.

CIE procedure for Project Work Phase -1:

(i) **Single discipline:** The CIE marks shall be awarded by a committee consisting of the Head of the concerned Department and two senior faculty members of the Department, one of whom shall be the Guide.

The CIE marks awarded for the project work phase -1, shall be based on the evaluation of the project work phase -1 Report (covering Literature Survey, Problem identification, Objectives and Methodology), project presentation skill and question and answer session in the ratio 50:25:25. The marks awarded for the Project report shall be the same for all the batch mates.

(ii) **Interdisciplinary:** Continuous Internal Evaluation shall be group wise at the college level with the participation of all guides of the college. Participation of external guide/s, if any, is desirable.

The CIE marks awarded for the project work phase -1, shall be based on the evaluation of project work phase -1 Report (covering Literature Survey, Problem identification, Objectives and Methodology), project presentation skill and question and answer session in the ratio 50:25:25. The marks awarded for the project report shall be the same for all the batch mates.
Internship

Internship: All the students admitted to III year of BE/B.Tech shall have to undergo mandatory internship of 4 weeks during the vacation of VI and VII Course Codes and/or VII and VIII Course Codes. A University examination shall be conducted during VIII Course Code and the prescribed credit shall be included in VIII Course Code. Internship shall be considered as a head of passing and shall be considered for the award of degree. Those, who do not take-up/complete the internship shall be declared fail and shall have to complete during subsequent University examination after satisfying the internship requirements.
B. E. BIOMEDICAL ENGINEERING
Choice Based Credit System (CBCS) and Outcome Based Education (OBE)
SEMESTER - VIII

Medical Imaging Systems
(Common to BM & ML)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>CIE Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>18BM/ML81</td>
<td>40</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teaching Hours/week (L:T:P)</th>
<th>SEE Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:2:0</td>
<td>60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Credits</th>
<th>Exam Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>03</td>
<td>03</td>
</tr>
</tbody>
</table>

Module -1

X-Ray Diagnostic Methods: Conventional X-ray radiography, Fluoroscopy, Angiography, Mammography and Xeroradiography.

Module -2

Ultrasound Diagnostic Methods: Pulse echo systems- Amplitude mode (A-mode), Brightness mode (B-mode), Motion mode (M-mode), Doppler methods, Duplex imaging, Tissue characterization, Colour Doppler flow imaging, Image characteristics – Ultrasonic texture or speckle, Speckle reduction, Compensation of phase aberration, Biological effects of ultrasound.

Module -3

Module -4

Basics of Magnetic Resonance Imaging: Fundamentals of nuclear magnetic resonance- Angular momentum, magnetic dipole moment, magnetization, Larmor frequency, Free induction decay (FID), Fourier spectrum of the NMR signal, Spin density, Relaxation times, Pulse sequences.

MRI System & Imaging Methods: Introduction, Magnet, NMR Coil/Probe, Transmitter, Receiver, Data acquisition. Imaging Methods- Introduction, slice selection, frequency encoding, phase encoding, Spin-Echo imaging- Gradient echo imaging, Characteristics of MRI images- Spatial resolution, image contrast. Biological effects of magnetic fields- Static magnetic fields, Radio-frequency fields, Gradient magnetic fields, Imaging safety, Functional MRI (brief introduction only).

Module 5:

Thermal Imaging: Medical thermography, Physics of thermography, Infrared detectors, Thermographic equipment, Quantitative medical thermography, Pyroelectric vidicon camera, Thermal camera based on IR sensor with digital focal plane array.

Advances in Medical Imaging: Image guided intervention- Introduction, Stereotactic neurosurgery, Stereotactic neurosurgery based on digital image volumes- image acquisition, planning and transfer.
Intraoperative Imaging- Intraoperative diagnostic imaging, transfer by matching preoperative with intraoperative images, augmented reality.

<table>
<thead>
<tr>
<th>Course Outcomes: After studying this course, students will be able to:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Describe the fundamentals of x-ray radiography and computed tomography, and analyze the system requirements.</td>
</tr>
<tr>
<td>2. Explain principles of ultrasound imaging and diagnostic methods and analyze the system requirements.</td>
</tr>
<tr>
<td>3. Discuss the fundamentals of radionuclide imaging, MRI, thermal imaging and analyze the system requirements.</td>
</tr>
<tr>
<td>4. Describe the concepts of image Guided Intervention and image guided surgery.</td>
</tr>
<tr>
<td>5. Design and develop prototype of simple medical imaging system.</td>
</tr>
</tbody>
</table>

Question Paper Pattern:
- The question paper will have TEN questions.
- Each full question carries 20 marks
- There will be TWO full questions (with maximum of THREE sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer FIVE full questions, selecting ONE full question from each module.

Textbooks:

Reference Books:
<table>
<thead>
<tr>
<th>Module -1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview of MEMS and Micro systems: MEMS and Microsystems, Typical MEMS and Microsystem Products, Evolution of Micro-fabrication, Micro systems and Microelectronics, Multidisciplinary nature of Microsystem design and Manufacture, Microsystems and Miniaturization, Applications of Microsystem in Health-care Industry. ([Text 1: 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.8.1])</td>
</tr>
<tr>
<td>Bio-MEMS: Fabrication of Bio-MEMS, Structure, The Driving Force behind Biomedical Application, Biocompatibility, Reliability consideration. ([Text 2: 1.1, 1.1.1, 1.1.2, 1.2, 1.3, 1.4])</td>
</tr>
<tr>
<td>Microsensors: Acoustic wave sensor, Biomedical Sensors and Biosensors, Chemical Sensors, Optical Sensors, Pressure sensors, Thermal sensors. ([Text 1: 2.2])</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module -2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microactuation: Principal means of Microactuation, MEMS with Microactuators, Microaccelrometer, Microfluidic. ([Text 1: 2.3, 2.4, 2.5, 2.6])</td>
</tr>
<tr>
<td>Engineering Science for Microsystem Design and Fabrication: Ions and Ionization, The Diffusion Process, Plasma Physics, Electrochemistry, Quantum Physics. ([Text 1: 3.3, 3.6, 3.7, 3.8, 3.9])</td>
</tr>
<tr>
<td>Scaling Laws: Scaling in Geometry, Scaling in Rigid body Dynamics, Scaling in Electrostatic force, Electricity, Fluid mechanics, Heat Transfer. ([Text 1: 6.2, 6.3, 6.4, 6.6, 6.7, 6.8])</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module -3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering Mechanics for Microsystem Design: Static Bending of Thin plates – Circular Plates, Rectangular Plates, Square Plates with all Edges Fixed, Mechanical vibrations – General Formulation, Resonant Vibration, Design theory of Accelerometers. ([Text 1: 4.2, 4.2.1, 4.2.2, 4.2.3, 4.3, 4.3.1, 4.3.2, 4.3.4])</td>
</tr>
<tr>
<td>Detection and Measurement methods: Detection Scheme – Electrochemical Detection, Chemiluminescence and Bioluminescence, Fluorescence, Molecular Beacons, Measurement Systems. ([Text 2: 10.2.1, 10.2.2, 10.2.3, 10.2.4, 10.3])</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module -4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materials for MEMS and Microsystems: Substrates and wafers, Active Substrate materials, Silicon as a Substrate material – Ideal Substrate, Crystal Structure, Mechanical Properties of Silicon, Silicon Compounds, Silicon Peizoresistors, Gallium Arsenide, Quartz, Polymers, Packaging Materials. ([Text 1: 7.2, 7.3, 7.4.1, 7.4.3, 7.4.5, 7.5, 7.6, 7.7, 7.8, 7.10, 7.11])</td>
</tr>
<tr>
<td>Emerging Bio-MEMS Technology: Minimally invasive Surgery, Cardiovascular, Diabetes, Endoscopy, Oncology, Ophthalmology, Tissue Engineering, Cell-Based Biosensors, Home land Security. ([Text 2: 13.2, 13.4, 13.5, 13.6, 13.8, 13.9, 13.11, 13.12, 13.13])</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module -5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microsystem Fabrication Process: Photolithography, Ion Implantation, Diffusion, Oxidation, Chemical Vapour Deposition, Physical Vapour Deposition, Deposition By Epitaxy, Etching, The LIGA Process, Design Consideration Overview, Design Constraints. ([Text 1: 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, 8.8, 8.9, 9.4, 10.2, 10.2.1])</td>
</tr>
</tbody>
</table>

Course Outcomes: After studying this course, students will be able to:

1. Discuss MEMS with current and potential markets for types of Microsystems.
2. Identify the suitable material to develop a microsystem.
3. Explain the principles of emerging Bio-MEMS technology.
4. Apply the principles of microsensors and microactuators to design microsystem.
5. Illustrate micro-manufacturing techniques.

Question Paper Pattern
- The question paper will have TEN questions.
- Each full question carry 20 marks.
- There will be TWO full questions (with maximum of THREE sub questions) from each module.
- Each full question will have questions covering all the topics under a module.
- The students will have to answer FIVE full questions, selecting ONE full question from each module.

Textbooks:

Reference Books:
Module -1

Computer Networks In Health Care: Introduction, history, impact of clinical data, information types, platforms, current technologies, identifier standards, communication (message format) standards.

Module -2

Module -3

Module -4

Module -5

Blue Tooth: Blue tooth Architecture, Bluetooth Applications. Data Link Layer SWITCHING: Local Internet Working, Repeaters, Hubs, Bridges, Switches, Routers, and Gateways, Virtual LANs.

Note: Assignments may be given on the computer networking in the hospital and connecting to hospital database.
<table>
<thead>
<tr>
<th>Course Outcomes: After studying this course, students will be able to:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Explain the different formats of data generated in clinical field or Medical field.</td>
</tr>
<tr>
<td>2. Discriminate the functionality between the layers in OSI model and TCP/IP suite.</td>
</tr>
<tr>
<td>3. Discuss the concept of physical and data link layer.</td>
</tr>
<tr>
<td>4. Distinguish the IEEE standards designed to understand the interconnectivity between different LANs.</td>
</tr>
<tr>
<td>5. Apply different algorithms to route a packet to the destination for process to process delivery.</td>
</tr>
<tr>
<td>6. Discuss the concepts of Bluetooth technology, and transport & application layer.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Question Paper Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>▪ The question paper will have TEN questions.</td>
</tr>
<tr>
<td>▪ Each full question carry 20 marks</td>
</tr>
<tr>
<td>▪ There will be TWO full questions (with maximum of THREE sub questions) from each module.</td>
</tr>
<tr>
<td>▪ Each full question will have sub questions covering all the topics under a module.</td>
</tr>
<tr>
<td>▪ The students will have to answer FIVE full questions, selecting ONE full question from each module.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Textbooks:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Reference Books:</th>
</tr>
</thead>
</table>
B. E. BIOMEDICAL ENGINEERING
Choice Based Credit System (CBCS) and Outcome Based Education (OBE)
SEMESTER - VIII

Biomaterials and Artificial Organs
(Common to BM & ML)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>CIE Marks</th>
<th>Teaching Hours/week (L:T:P)</th>
<th>SEE Marks</th>
<th>Exam Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>18BM/ML823</td>
<td>40</td>
<td>2:2:0</td>
<td>60</td>
<td>03</td>
</tr>
<tr>
<td>Credits</td>
<td>03</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Module -1

Biomaterials: Introduction to biomaterials, uses of biomaterials, biomaterials in organs & body systems, materials for use in the body, performance of biomaterials.

Metallc Biomaterials: Introduction, Stainless steel, Cobalt- Chromium alloy, Titanium alloys, Titanium-Nickel alloys, Dental metals, Corrosion of metallic implants, Manufacturing of implants.

Ceramic Biomaterials: Introduction, non-absorbable/relatively bioinert-bioceramics, biodegradable/resorbable ceramics, bioreactive ceramics, deterioration of ceramics, bioceramic-manufacturing techniques

Module -2

Polymeric Biomaterials: Introduction, polymerization and basic structure, polymers used as biomaterials, sterilization, surface modifications to for improving biocompatibility.

Composite Biomaterials: Structure, bounds on properties, anisotropy of composites, particulate composites, fibrous composites, porous materials, biocompatibility.

Biodegradable Polymeric Biomaterials: Introduction, Glycolide based biodegradable homopolymers polyesters, non-glycolide linear aliphatic polyesters, aliphatic and aromatic polycarbonates, and biodegradation properties of synthetic biodegradable polymers. TISSUE DERIVED BIOMATERIALS: Structure and properties of collagen and collagen-rich tissues, biotechnology of collagen, design of resorbable collagen-based medical implant.

Module -3

Hard Tissue Replacements: Bone repair and joint implants-long bone repair and joint replacements, dental implants-effects of material selection, effects of surface properties, surface chemistry.

Preservation Techniques For Biomaterials: Phase behavior, nonfreezing storage-hypothermic, freeze-thaw technology, freeze-drying, and vitrification.

Artificial Organs: Introduction: Substitutive medicine, outlook for organ replacement, design consideration, evaluation process.

Module - 4

Artificial Heart And Circulatory Assist Devices: Engineering design, Engg design of artificial heart and circulatory assist devices, blood interfacing implants – introduction, total artificial hearts & ventricular assist devices, vascular prostheses, Non-blood interfacing implants for soft tissues- sutures and allied augmentation devices, percutaneous and skin implants, maxillofacial implants, eye and ear implants.

Cardiac Valve Prostheses: Mechanical valves, tissue valves, current types of prostheses, tissue versus mechanical, engineering concerns and hemodynamic assessment of prosthetic heart valves, implications for thrombus deposition, durability, current trends in valve design, vascular grafts-history, synthetic grafts, regional patency, thrombosis, neointimal hyperplasia, graft infections.

Artificial Kidney: Functions of the kidneys, kidney disease, renal failure, renal transplantation, artificial kidney, dialyzers, membranes for haemodialysis, haemodialysis machine, peritoneal dialysis equipment-therapy format, fluid and solute removal.

Module 5

Artificial Blood: Artificial oxygen carriers, flurocarbons, hemoglobin for oxygen carrying plasma
expanders, hemoglobin based artificial blood.

Artificial Lungs: Gas exchange systems, Cardiopulmonary bypass (heart-lung machine)-principle, block diagram and working, artificial lung versus natural lung. Liver functions, hepatic failure, liver support systems, general replacement of liver functions.

Artificial Pancreas: Structure and functions of pancreas, endocrine pancreas and insulin secretion, diabetes, insulin, insulin therapy, insulin administration systems. Tracheal replacement devices, laryngeal replacement devices, artificial esophagus Artificial Skin: Vital functions of skin, current treatment of massive skin loss, design principles for permanent skin replacement.

Course Outcomes: After studying this course, students will be able to:
1. Explain the principle and biology underlying the design of implants and artificial organs.
2. Differentiate classes of materials used in medicine.
3. Discuss the application of biomaterials in medicine.
4. Discuss concept of biocompatibility and the methods of biomaterial testing.
5. Discuss the design process in some of the prominent artificial organs.

Question Paper Pattern:
- The question paper will have TEN questions.
- Each full question carries 20 marks
- There will be TWO full questions (with maximum of THREE sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer FIVE full questions, selecting ONE full question from each module.

Textbooks:
B. E. BIOMEDICAL ENGINEERING
Choice Based Credit System (CBCS) and Outcome Based Education (OBE)
SEMESTER - VIII

Artificial Intelligence and Machine Learning
(Common to EI, BM & ML)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>CIE Marks</th>
<th>Teaching Hours/week (L:T:P)</th>
<th>SEE Marks</th>
<th>Exam Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>18EI/BM/ML824</td>
<td></td>
<td>2:2:0</td>
<td></td>
<td>03</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td></td>
<td>60</td>
<td></td>
</tr>
</tbody>
</table>

Module -1
Artificial Intelligence: The AI Problems, the underlying Assumption, what is an AI technique? (Text 1-1.1,1.2,1.3)
Natural Language Processing: Introduction, Steps in the Process. (Text 1-15.1,15.1.1)

Module – 2
Parallel and Distributed AI: Psychological Modeling, Parallelism in Reasoning Systems, Distributed Reasoning Systems: Coordination and Cooperation. (Text1-16.1,16.2,16.3,16.3.1)
Connectionist Models: Introduction: Hopfield Networks, Connectionist AI and Symbolic AI. (Text 1-18.1,18.6)

Module – 3
Genetic Algorithms (Gas): Learning: Generalization of an Input-Output table, Significance of the Genetic operators, Ant Algorithms (Text 1-23.2,23.2.2,23.3,23.8)

Module -4
Supervised Learning: Learning a class from examples, Noise, Learning Multiple classes, Regression, Model selection and Generalization, Dimensions of a supervised Machine learning Algorithm. (Text 2-1.1,1.2.1.2.1.2.4.2.5.2.6.7.2.8)

Module -5
Dimensionality Reduction: Introduction, Subset selection, Principal Component analysis.

Course Outcomes: After studying this course, students will be able to
- Appraise the basics of Artificial intelligence and concepts of natural language processing.
- Illustrate the working of Parallel, Distributed and connectionist models of AI.
- Discuss the fundamentals of Genetic algorithms.
- Escalate the underlying mathematical relationships within and across Machine Learning algorithms and the paradigms of supervised learning.
- Explore the associated parameters of the Machine Learning algorithms viz., dimensionality reduction, classification, etc.

Question Paper Pattern
- The question paper will have TEN questions.
- Each full question carry 16 marks
- There will be TWO full questions (with maximum of THREE sub questions) from each module
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer FIVE full questions, selecting ONE full question from each module.
module.

<table>
<thead>
<tr>
<th>Textbooks</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Reference Books</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>18BMP83</td>
</tr>
</tbody>
</table>

Course Learning Objectives:
- To support independent learning.
- To develop interactive, communication, organization, time management, and presentation skills.
- To impart flexibility and adaptability.
- To inspire independent and team working.
- To expand intellectual capacity, credibility, judgment, intuition.
- To adhere to punctuality, setting and meeting deadlines.
- To instill responsibilities to oneself and others.
- To train students to present the topic of project work in a seminar without any fear, face audience confidently, enhance communication skill, involve in group discussion to present and exchange ideas.

Project Work Phase II: Each student of the project batch shall involve in carrying out the project work jointly in constant consultation with internal guide, co-guide, and external guide and prepare the project report as per the norms avoiding plagiarism.

Course outcomes: At the end of the course the student will be able to:
- Describe the project and be able to defend it.
- Develop critical thinking and problem solving skills.
- Learn to use modern tools and techniques.
- Communicate effectively and to present ideas clearly and coherently both in written and oral forms.
- Develop skills to work in a team to achieve common goal.
- Develop skills of project management and finance.
- Develop skills of self-learning, evaluate their learning and take appropriate actions to improve it.
- Prepare themselves for life-long learning to face the challenges and support the technological changes to meet the societal needs.

Evaluation Procedure:
- **As per University guidelines**
- **Internal Marks:** The Internal marks (100 marks) evaluation shall be based on Phase wise completion of the project work, Project report, Presentation and Demonstration of the actual/model/prototype of the project.
- **Course Code End Examination:** SEE marks for the project (100 marks) shall be based on Project report, Presentation and Demonstration of the actual/model/prototype of the project, as per the University norms by the examiners appointed VTU.
Technical Seminar

Course Code : 18BMS84 CIE Marks : 100
Teaching Hours/week (L:T:P) : 0:0:2 SEE Marks : ---
Credits : 01 Exam Hours : ---

Course Learning Objectives:
The objective of the seminar is to inculcate self-learning, face audience confidently, enhance communication skill, involve in group discussion and present and exchange ideas. Each student, under the guidance of a Faculty, is required to choose, preferably, a recent topic of his/her interest relevant to the course of specialization. Carryout literature survey, organize the Course topics in a systematic order.

- Conduct literature survey in the domain area to find appropriate topic.
- Prepare the synopsis report with own sentences in a standard format.
- Learn to use MS word, MS power point, MS equation and Drawing tools or any such facilities in the preparation of report and presentation.
- Present the seminar topic orally and/or through power point slides.
- Communicate effectively to answer the queries and involve in debate/discussion.

The participants shall take part in discussion to foster friendly and stimulating environment in which the students are motivated to reach high standards and become self-confident.

Course outcomes:
At the end of the course the student will be able to:

- Develop knowledge in the field of Electronics & Instrumentation Engineering and other disciplines through independent learning and collaborative study.
- Identify and discuss the current, real-time issues and challenges in engineering & technology.
- Develop written and oral communication skills.
- Explore concepts in larger diverse social and academic contexts.
- Apply principles of ethics and respect in interaction with others.
- Develop the skills to enable life-long learning.

Evaluation Procedure:
- As per University guidelines.
- The Internal Assessment marks for the seminar shall be awarded based on the relevance of the seminar topic, quality of the report, presentation skills, participation in the question and answer, and attendance in the seminar classes/sessions.
Course Learning Objectives:
Internship/Professional practice provide students the opportunity of hands-on experience that include personal training, time and stress management, interactive skills, presentations, budgeting, marketing, liability and risk management, paperwork, equipment ordering, maintenance, responding to emergencies etc. The objective are further,

- To put theory into practice
- To relate to, interact with, and learn from current professionals in the field.
- To gain a greater understanding of the duties and responsibilities of a professional
- To understand and adhere to professional standards in the field.
- To gain insight to professional communication including meetings, memos, reading, writing, public speaking, research, client interaction, input of ideas, and confidentiality.
- To identify personal strengths and weaknesses.
- To develop the initiative and motivation to be a self-starter and work independently.

Internship/Professional practice: Students under the guidance of internal guide/s and external guide shall take part in all the activities regularly to acquire as much knowledge as possible without causing any inconvenience at the place of internship.

Seminar: Each student, is required to
- Present the seminar on the internship orally and/or through power point slides.
- Answer the queries and involve in debate/discussion.
- Submit the report duly certified by the external guide.

Course outcomes: At the end of the course the student will be able to:
- Acquire practical experience within industry in which the internship is done.
- Apply knowledge and skills learned to classroom work.
- Experience the activities and functions of professionals.
- Develop and refine oral and written communication skills.
- Recognize the areas for future knowledge and skill development.
- Acquire the basic knowledge of administration, marketing, finance and economics.
- Develop the skills to enable lifelong learning.

Evaluation Procedure:
- As per University guidelines.
- Evaluation of CIE Marks: The Internal Assessment marks shall be awarded based on the Internship/Professional Practice Report and Seminar Presentation.
- Course Code End Examination: The marks shall be awarded based on the Internship/Professional Practice Report and Seminar Presentationas per the University norms by the examiners appointed VTU.