EXERCISE 7.2
6. \(\angle BCD = \angle BCA + \angle DCA = \angle B + \angle D \)
7. each is of 45°

EXERCISE 7.3
3. (ii) From (i), \(\angle ABM = \angle PQN \)

EXERCISE 7.4
4. Join BD and show \(\angle B > \angle D \). Join AC and show \(\angle A > \angle C \).
5. \(\angle Q + \angle QPS > \angle R + \angle RPS \), etc.

EXERCISE 8.1
1. 36°, 60°, 108° and 156°.
6. (i) From \(\triangle DAC \) and \(\triangle BCA \), show \(\angle DAC = \angle BCA \) and \(\angle ACD = \angle CAB \), etc.
(ii) Show \(\angle BAC = \angle BCA \), using Theorem 8.4.

EXERCISE 8.2
2. Show PQRS is a parallelogram. Also show PQ \parallel AC \text{ and } PS \parallel BD. \text{ So, } \angle P = 90°.
5. AECF is a parallelogram. So, AF \parallel CE, etc.

EXERCISE 9.1
1. (i) Base DC, parallels DC and AB; (iii) Base QR, parallels QR and PS; (v) Base AD, parallels AD and BQ

EXERCISE 9.2
1. 12.8 cm.
2. Join EG; Use result of Example 2.
6. Wheat in \(\triangle APQ \) and pulses in other two triangles or pulses in \(\triangle APQ \) and wheat in other two triangles.

EXERCISE 9.3
4. Draw CM \perp AB and DN \perp AB. Show CM = DN.
12. See Example 4.