A Voltmeter of resistance 10 kΩ is connected across a resistor of resistance 400 Ω as shown in figure. Find reading of volt meter.

\[6 \text{ V} \]

\[\text{VMM} \quad \text{VMM} \]

\[400 \quad 400 \]

\[\text{SoL:} \]

Current in circuit \[I = \frac{G}{\text{Req}} \]

\[I = \frac{6}{\frac{400 + 400 \times 10,000}{10,400}} = \frac{6}{11,841.02} = 5 \times 10^{-3} \text{ Amp} \]

Now reading of Voltmeter will be equal to PD across combination of Voltmeter and 400Ω.

Thus \[V = I \times R \]

\[V = 5 \times 10^{-3} \times \frac{4 \times 10^3 \times 10,000}{10,400} = 1.95 \text{ Volt} \]
9.1 A block has been thrown along a rough inclined surface at an initial velocity of \(v_0 \) as shown in figure. If it reaches again at starting point with a speed of \(v_0/2 \) then coefficient of friction \(\mu \) block and inclined surface is:

- a) 0.05
- b) 0.75
- c) 0.35
- d) 0.50

Solution:
If block is moving up, its acceleration is

\[
\begin{align*}
\text{mg} \sin 30^\circ + \mu \text{mg} \cos 30^\circ &= ma \\
a &= \frac{g}{2} \left(1 + \sqrt{3} \mu \right)
\end{align*}
\]

Now block will reach a maximum distance of \(L \) along surface, then

\[
\begin{align*}
\dot{v}^2 &= \dot{u}^2 - 2as \\
v_0^2 &= \frac{g}{2} \left(1 + \sqrt{3} \mu \right) L
\end{align*}
\]

Now apply work-energy theorem for complete motion.

\[
\begin{align*}
-f \times 2L &= \frac{1}{2} m v_0^2 - \frac{1}{2} m v_L^2 \\
\mu \theta \frac{\sqrt{3}}{2} L \times 2 \cdot \frac{v_0^2}{g(1+\sqrt{3}\mu)} &= \frac{3}{8} \dot{\theta} v_0^2
\end{align*}
\]
Q.3 Two concentric shells of radius R and $4R$ having charges of Q_1 and Q_2 respectively as placed as shown in figure, potential difference between shell will be.

\[a) \frac{3}{4\pi\varepsilon_0} \frac{Q_2}{R} \]
\[b) \frac{3}{4\pi\varepsilon_0} \frac{Q_1}{R} \]
\[c) \frac{3}{4\pi\varepsilon_0} \frac{Q_1}{R} \]

Solf \[= \text{for shell of radius } R, \text{ potential is} \]
\[V_1 = \frac{1}{4\pi\varepsilon_0} \frac{Q_1}{R} + \frac{1}{4\pi\varepsilon_0} \frac{Q_2}{4R} \]

for outer shell of radius $4R$, potential is
\[V_2 = \frac{1}{4\pi\varepsilon_0} \frac{Q_1 + Q_2}{4R} \]

\[DV = V_2 - V_1 \]
\[= \frac{1}{4\pi\varepsilon_0} \frac{Q_1}{R} - \frac{1}{4\pi\varepsilon_0} \frac{Q_1}{4R} \]
\[DV = \frac{3}{16\pi\varepsilon_0} \frac{Q_1}{R} \]
Three point masses of \(m \) mass each are placed at the corners of an equilateral triangle as shown in figure. Find moment of inertia of given mass system about \(y \)-axis. \(I_y = \frac{N}{20} m a^2 \) then find \(N \).

\[
\begin{align*}
\text{a)} & \ 5 \\
\text{b)} & \ 15 \\
\text{c)} & \ 25 \\
\text{d)} & \ 50
\end{align*}
\]

So:\[I_y = m(0)^2 + m(a)^2 + m\left(\frac{a}{2}\right)^2 \]

\[
I_y = ma^2 + ma^2 = 5ma^2 \quad \therefore \quad \frac{s}{5} = \frac{25ma^2}{20} \]

\[N = 25 \]
A body cools from 50°C to 40°C in 5 min. Surrounding temperature for the process is given as 20°C. Find temperature of body in next 5 min.

a) 13.3°C
Let 83.3°C

b) 23.3°C
N 43.3°C

Sol.- According to Newton's Cooling Law

\[
\frac{dT}{dt} = k \left(T_{\text{body}} - T_{\text{surrounding}} \right)
\]

for 1st 5 min =

\[
\frac{50 - T_0}{5} = k \left(\frac{50 + T_0}{2} - 20 \right) = k \times 25
\]

for next 5 min =

\[
\frac{40 - T}{5} = k \left(\frac{T + 40}{2} - 20 \right) = \frac{k \times 40}{2}
\]

eq 0

\[
\frac{10}{40 - T} = \frac{25 \times 2}{T} \quad \Rightarrow \quad T = 33.33°C
\]
A particle of mass \(m \) which is placed at rest, has been given constant power \(P \). Choose correct graph:

a)

\[
\text{distance } (s) \quad \text{time } (t)
\]

b)

\[
\text{distance } (s) \quad \text{time } (t)
\]

d)

\[
\text{distance } (s) \quad \text{time } (t)
\]

d)

\[
\text{distance } (s) \quad \text{time } (t)
\]

Solution:

\[
P = F \cdot v = m \cdot a \cdot v
\]

\[
P = m \frac{dv}{dt} \cdot v
\]

\[
\int v \, dv = \int \frac{P}{m} \, dt
\]

\[
v^2 = \frac{P}{m} t + C
\]

\[
\frac{v^2}{2} = \frac{P}{m} t
\]

\[
v = \sqrt{\frac{2P}{m} t + 112}
\]

\[
\int ds = \sqrt{\frac{2P}{m}} \int \frac{112}{t} \, dt
\]

\[
s = \frac{2}{3} \sqrt{\frac{2P}{m}} t^{3} + 12
\]
Two point sources of powers 200 W emit photons and x-rays at wavelengths 500 nm and 1 nm respectively, then what will be the ratio of photon density for both the sources.

\[\frac{n_1}{n_2} = \frac{\lambda_1}{\lambda_2} = \frac{500}{1} = 500 \]

For any point charge powers emitted is

\[p = n \ h \ \nu = n \ \frac{h \ c}{\ \lambda} \]

then for same powers, \(n \ \propto \ \lambda \)
Mass density of a solid sphere of radius R varies as
\[\rho = \rho_0 \left(1 - \frac{r^2}{R^2} \right) \]
where r is distance from centre of sphere. Find maximum gravitational field.

a) \(\frac{\sqrt{5}}{5} \pi \rho_0 R \)
b) \(\frac{\sqrt{3}}{3} \pi \rho_0 R \)
c) \(\frac{\sqrt{5}}{8} \pi \rho_0 R \)

The gravitational field at a distance r from centre is

\[E_g = \frac{\mu_0 M_{\text{inside}}}{r^2} \]

Now
\[M_{\text{inside}} = \int_0^R \int_0^{2\pi} \int_0^1 \rho_0 \left(1 - \frac{r^2}{R^2} \right) r \, dr \, d\theta \, dz \]

\[M_{\text{inside}} = \frac{4}{3} \pi \rho_0 \left(\frac{R^3}{3} - \frac{R^5}{5R^2} \right) \]

Then
\[E_g = \frac{\mu_0 M_{\text{inside}}}{r^2} = \frac{\mu_0 \frac{4}{3} \pi \rho_0 \left(\frac{R^3}{3} - \frac{R^5}{5R^2} \right)}{r^2} = \mu_0 \frac{4}{3} \pi \rho_0 \left(\frac{9}{3} - \frac{8}{3} \right) \]

For maximum $E_g = \frac{dE_g}{dr}$

\[\frac{dE_g}{dr} = 0 \Rightarrow \frac{1}{3} - \frac{3r^2}{5R^2} = 0 \]

\[r = \sqrt{5} R \]

Then
\[(E_g)_{\text{max}} = \frac{\sqrt{5}}{27} \pi \rho_0 R \]
A spherical mirror forms an image of an object placed at a distance of 30 cm at 100 cm distance. Now if object start moving with a speed of 3 cm/sec towards mirror then what will be speed of image.

a) - 90 cm/sec
b) - 30 cm/sec
c) + 90 cm/sec

\[\frac{1}{v} + \frac{1}{u} = \frac{1}{f} \] then \[-\frac{1}{v} \frac{dv}{dt} - \frac{1}{u} \frac{du}{dt} = 0 \]

\[v_1 = -\frac{u^2}{v} \cdot v_0 \]

\[v_1 = -\frac{100}{800} \times 9 = -1 \text{ cm/sec} \]
An ideal gas has given a heat of 160 J at constant pressure and when 240 J heat has been given at constant volume then its temperature rises by 100°C. What is degree of freedom of gas?

a) 3
b) 5
d) 7

\[\text{at } P = c \Rightarrow \Delta H = n C_p \Delta T \]
\[160 = n C_p \times 50^\circ C \quad -1 \]

\[\text{at } V = c \Rightarrow \Delta H = n C_V \Delta T \]
\[240 = n C_V \times 100^\circ C \quad -2 \]

\[\frac{1}{2} = \frac{C_p}{C_V} = \frac{4}{3} = 1 + \frac{2}{f} \]

Then \(f = 6 \)
8.11 A block of mass \(m \) is performing SHM on a line with amplitude \(A \) and frequency \(f \). Now suddenly it half of the mass comes to rest when block is at mean position then amplitude of remaining mass is \(\frac{A}{2} \). Find \(\lambda \).

(a) 2
(b) \(\frac{1}{2} \)
(c) \(\frac{1}{\sqrt{2}} \)

SOL:- At mean position, apply conservation of linear momentum.

\[
M \times v_{\text{max}} = \frac{M}{2} \times v'_{\text{max}}
\]

\[
M \times \frac{\pi f}{2} \times A = \frac{M}{2} \times \frac{\pi f}{2} \times A'
\]

\[
A \times \sqrt{\frac{k}{m}} = \frac{A'}{2} \sqrt{\frac{k}{m''}}
\]

\[
A' = \sqrt{2} A
\]
Q. 12 which is correct option for dimension of Solar constant:

a) \(M^0 L^0 T^3 \)

b) \(M^1 L^1 T^{-2} \)

c) \(M^0 L^0 T^{-3} \)

d) \(M^1 L^1 T^{-3} \)

\[\text{Solar constant} = \frac{\text{Radiation energy}}{\text{Radiant area \times time}} \]

\[\text{Solar constant} (\sigma) = \frac{M^1 L^2 T^{-2}}{T L^2} = M^1 L^0 T^{-3} \]
A block of mass 1.9 kg is placed on another fixed block of height 1 m as shown in figure. A bullet of mass 0.1 kg hit the block of mass 1.9 kg and get embedded into it. Find kinetic energy of block when it hit ground.

\[\begin{align*}
&20 \text{ms} \\
\rightarrow \quad &1.9 \\
\uparrow &1 \text{m} \\
\downarrow
\end{align*} \]

\begin{align*}
\text{Sol.} & \quad \text{Apply conservation of momentum for block and bullet.} \\
0.1 \times 20 & = (1.9 + 0.1) V \\
\Rightarrow \quad & V = 1 \text{ms} \\
\text{now apply work-energy theorem from top of the block to ground.} \\
+ 20 \times 1 & = \frac{1}{2} x 2 x V^2 - \frac{1}{2} x 2 x 1^2 \\
\Rightarrow \quad & V^2 = 21 \\
\Rightarrow \quad & KE = \frac{1}{2} x 2 x V^2 \\
\Rightarrow \quad & KE = 21 J
\end{align*}
A current carrying loop is placed in uniform magnetic field \(B \) such that the magnetic field lies in the plane of loop. Area of loop is \(S \) and carry a current \(I \). If \(\tau \) is the torque experienced by loop then find \(|\tau| \).

\[
\text{a) } \frac{2S}{Ni} \quad \text{c) } \frac{2N}{iS} \\
\text{b) } \frac{2}{NSi} \quad \text{d) } \frac{2i}{NS} \]

(where \(N \) = number of turn of coil)

Solution:

\[
|\tau| = |\vec{M} \times \vec{B}| = MB \sin \theta
\]

\[
\tau = NI \times B \sin \theta
\]

\[
\frac{\tau}{B} = \frac{2}{NSi}
\]
Electric field of an electromagnetic wave is given as \(\vec{E} = E_0 \cos(\omega t - kx) \hat{j} \). Then which equation gives corresponding magnetic field at \(t = 0 \)?

a) \(\vec{B} = \frac{E_0}{\mu_0 \epsilon_0} \cos kx \hat{k} \)
\(\Rightarrow \vec{B} = E_0 \sqrt{\frac{\mu_0}{\epsilon_0}} \cos kx \hat{k} \)

b) \(\vec{B} = \frac{E_0}{\sqrt{\mu_0 \epsilon_0}} \cos kx (-\hat{k}) \)
\(\Rightarrow \vec{B} = E_0 \sqrt{\frac{\mu_0}{\epsilon_0}} \cos kx (-\hat{k}) \)

so \(\vec{B} \) for amplitude of magnetic field
\(B_0 = \frac{E_0}{c} = E_0 \sqrt{\frac{\mu_0}{\epsilon_0}} \)

now to satisfy \(\vec{E} \times \vec{B} \parallel \hat{z} \)
and \(\hat{z} \) is in a direction.
then \(\vec{B} \) is in \(+z \)-direction.

\[\vec{B} = E_0 \sqrt{\frac{\mu_0}{\epsilon_0}} \cos kx \hat{k} \]
A P-N Junction becomes active when photons of wavelength 1.0um falls on it. Find energy band gap for junction.

\[\text{Let } E = 8.09 \text{ ev} \quad c) \quad 3.45 \text{ ev} \]
\[b) \quad 2.45 \text{ ev} \quad d) \quad 2.09 \text{ ev} \]

Solution for energy band gap

\[E = h\nu = \frac{hc}{\lambda} = \frac{1237.5}{400} = 3.09 \text{ ev} \]
An uniform rod of length l is rotating about vertical axis AB from one end with angular velocity ω rad/sec as shown in figure. Find $\cos \theta$.

\[a) \quad \frac{g}{2 \omega^2} \]
\[b) \quad \frac{g}{\omega^2} \]
\[c) \quad \frac{2g}{l \omega^2} \]
\[d) \quad \frac{3g}{l \omega^2} \]

Solve for θ from rotating frame.

\[\rightarrow \quad \tau_{centrifugal} = \tau_{mg} \]
\[\tau_{centrifugal} = \int (dm \sin \theta \omega^2) \times (r \cos \theta) \]
\[= M \int_a^b \omega^2 \sin \theta \cos \theta \, du = \frac{Md \omega^2 \sin \theta \cos \theta}{3} \]
\[\tau_{centrifugal} = \tau_{mg} \]
\[\rightarrow \quad \tau = \tau_{mg} \]
\[\frac{Md \omega^2 \sin \theta \cos \theta}{3} = mg \times \frac{4}{3} \sin \theta \]

\[\cos \theta = \frac{3}{2} \frac{8}{l \omega^2} \]
Two light rays of wavelength λ are in phase initially. Now 1st ray travels from a medium of refractive index n_1 upto a length L_1, and second ray travels from a medium of refractive index n_2 upto a length L_2. Find phase difference between rays now.

a) \(\frac{2\pi c}{\lambda} (L_2 - L_1) \) \hspace{1cm} \text{let} \hspace{1cm} \frac{2\pi c}{\lambda} (n_1 L_1 - n_2 L_2)

b) \(\frac{2\pi c}{\lambda} \left(\frac{L_2}{n_2} - \frac{L_1}{n_1} \right) \) \hspace{1cm} \text{or} \hspace{1cm} \frac{2\pi c}{\lambda} \left(\frac{L_1}{n_1} - \frac{L_2}{n_2} \right)

Solution:

According to optical path concept:

\[L_1' = L_1 n_1 \quad L_2' = L_2 n_2 \]

Then path difference

\[DL = L_1' - L_2' \]

\[DL = L_1 n_1 - L_2 n_2 \]

Now

\[\Delta \phi = \frac{2\pi c}{\lambda} DL = \frac{2\pi c}{\lambda} (L_1 n_1 - L_2 n_2) \]