10. Two point charges of \(+2, -2, +2, -2 \) are arranged symmetrically on the circumference of a circle as shown in the figure. If \(V \) and \(E \) are potential and field at the centre of the circle, they choose correct statements.

\[\text{I) } E = 0, \ V = 0 \]
\[\text{II) } E \neq 0, \ V = 0 \]
\[\text{III) } E = 0, \ V \
eq 0 \]
\[\text{IV) } E \neq 0, \ V \neq 0 \]

Solution:

For \(V \),

\[V = \sum \left(\frac{kq_1r_1}{r_1} \right) - \sum \left(\frac{kq_2r_2}{r_2} \right) = 0 \]

For \(E \),

As all vectors are cancelled out, then

\[\theta \neq 0 \quad E = 0 \]
Q. 1: A body of mass 2 kg is moving under the influence of constant power delivery 4 J watt which is initially kept at rest. The distance travelled by body in initial 6 sec will be-

- a) \(2\sqrt{3}\) m
- b) \(3\sqrt{3}\) m
- c) \(5\sqrt{3}\) m

Solution:

\[P = \int F \, dt \]

\[W = Pt \]

\[\text{work} \equiv W = 1 \times t - c.i.

By using work energy theorem

\[\Delta KE = W \]

\[KE_{\text{final}} - KE_{\text{in}} = t \]

\[\frac{1}{2} mv^2 = t \]

\[v^2 = t \]

\[v = \sqrt{t} \]

\[\frac{ds}{dt} = \sqrt{t} \]

\[ds = \int \sqrt{t} \, dt \]

\[s = \frac{2}{3} \times 12 \]

\[s = \frac{2}{3} \times 8\sqrt{6} \]

\[s = 4\sqrt{6} \, m \]
Q.2 For a parallel plate capacitor length of plate is \(l \) and width of plate is \(b \). This capacitor is charged to some potential difference and filled with dielectric of constant \(k=4 \). Now length of plate is increased by \(l \), amount keeping dielectric medium as per previous dimensions. If energy stored in capacitors becomes doubled then find \(l \), in terms of \(l \).

\[a) \quad l_1 = l \]
\[b) \quad l_1 = 2l \]
\[c) \quad l_1 = 4l \]
\[d) \quad l_1 = 8l \]

\[\text{Solution:} \quad \text{Before} \quad \Rightarrow \quad C_{\text{in}} = \frac{4\varepsilon_0 \cdot b \cdot l}{d} \]
\[V_{\text{in}} = \frac{1}{2} \frac{Q^2}{C_{\text{in}}} \]

\[\text{After} \quad \Rightarrow \quad C_{\text{final}} = \frac{\varepsilon_0}{d} (4b^2 + 4l^2) \]
\[V_{\text{final}} = \frac{1}{2} \frac{Q^2}{C_{\text{final}}} \]

Now
\[\frac{Q^2}{2C_{\text{final}}} = \frac{Q^2}{2C_{\text{in}}} \]
\[\text{by solving} \]
\[l_1 = 4l \]
Problem 3: An ideal gas (diatomic) is taken through an adiabatic process to change its density by 32 times. Then find increase in pressure.

a) 4 \times \text{time} \\
b) 16 \times \text{time} \\
c) 64 \times \text{time}

Solution:

For adiabatic process,

\[pV^n = \text{constant} \]

\[\Rightarrow \text{For ideal gas} \quad \frac{p}{V} = \text{constant} \]

\[\Rightarrow \text{then relation would be} \]

\[\frac{p}{V^n} = \text{constant} \]

\[\Rightarrow \frac{P_1}{V_1^n} = \frac{P_2}{V_2^n} \Rightarrow \text{now} \quad P_2 = 32P_1 \]

\[\frac{P_1}{V_1^n} = \frac{P_2}{(32^n) V_1^n} \Rightarrow P_2 = (32^n) P_1 \]

For diatomic

\[P_2 = (32) \times 5 P_1 \]

\[P_2 = 2^7 P_1 = 128 P_1 \]
Q: \[y = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} \]
and \(z = \frac{1}{\mu_0 c} \), which of the following option is correct?

a) dimensions of \(y \) and \(z \) are the same
b) dimensions of \(y \) and \(z \) are different
c) dimension of \(y \) and \(z \) are the same

SOL: for \(y = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} \) then \(y = LT^{-1} \) \(\mu \) speed of light

\(y = \frac{E}{B} = c \) then \(c = LT^{-1} \) \(\mu \) speed of light

\(z = \frac{1}{\mu_0 c} = \frac{1}{\mu_0} \) then \(z = T^{-1} \) time constant
2.5 Two metallic rods of length d_1 and d_2 and coefficient of linear expansion α_1 and α_2 are connected in series, find effective coefficient of linear expansion of combination.

a) \[\frac{\alpha_1 + \alpha_2}{2} \]

b) \[\frac{d_1 \alpha_1 + d_2 \alpha_2}{d_1 + d_2} \]

c) \[\frac{d_1 \alpha_1 - d_2 \alpha_2}{d_1 + d_2} \]

d) \[\frac{d_1 \alpha_2 + d_2 \alpha_1}{d_1 + d_2} \]

Sol:

then change in length with Δt temp rise

\[\Delta d = \Delta d_1 + \Delta d_2 \]
\[= d_1 \alpha_1 \Delta t + d_2 \alpha_2 \Delta t \]

now for effective expansion coefficient α_{eff}

\[\Delta d = (d_1 + d_2) \alpha_{\text{eff}} \Delta t \]

then for same temp rise Δd must be same

\[(d_1 + d_2) \alpha_{\text{eff}} \Delta t = d_1 \alpha_1 \Delta t + d_2 \alpha_2 \Delta t \]

\[\alpha_{\text{eff}} = \frac{d_1 \alpha_1 + d_2 \alpha_2}{d_1 + d_2} \]
Q6: For a particle performing straight line
motion, velocity-time graph is given as
shown in figure, what will be displacement
of particle in 6 sec of motion.
a) 300 \(\sqrt{3} \) (meter) b) 11 (meter)
c) 51.5 (meter) d) 431.3 (meter)

\[v(t) \]

\[\begin{array}{c}
\text{4} \\
\text{0} \\
\text{2} \\
\end{array} \]

Sodi: Area under v-t graph shows displacement.

\[
S = \left[\frac{1}{2} \times \left(2 + \frac{13}{3} \right) \times 4 \right] - \left[\frac{1}{2} \times 2 \times \left(6 - \frac{13}{3} \right) \right]
\]

\[
S = \frac{38}{3} - \frac{5}{2} = 11 \text{ m}
\]

Use concept of similar triangle to find time
at which velocity becomes zero again.
Q. 7: A ball is released from rest at a height of \(h \) from surface of liquid which is filled inside a very long vertical container as shown in figure. If velocity of ball remain constant after entering in liquid then find \(h \). If density of liquid = \(\sigma \), density of ball = \(\rho \), viscosity of liquid = \(\eta \) and radius of ball is \(R \).

\[
\begin{align*}
\text{a)} & \quad \frac{2}{50} \frac{s^4 (1 - \sigma^2)}{\eta^2} \\
\text{b)} & \quad \frac{2}{81} \frac{s^4 (1 - \sigma^2)}{\eta^2} \\
\text{c)} & \quad \frac{2}{81} \frac{s^4 (1 - \sigma^2)}{\eta^2} \\
\text{d)} & \quad \frac{2}{50} \frac{s^4 (1 - \sigma^2)}{\eta^2}
\end{align*}
\]

Sol.:- As velocity of ball doesn’t change after it hit liquid surface, the it must be equal to terminal velocity then

\[
v = \frac{2}{9} \frac{(1 - \sigma^2) s^2 g}{\eta^2} \quad \text{now after travelling } h \text{,}
\]

\[
\sqrt{2g h} = \frac{2}{9} \frac{(1 - \sigma^2) s^2 g}{\eta^2} \implies h = \frac{2}{81} \frac{s^4 (1 - \sigma^2)}{\eta^4} \]
Q.6: For a thin prism, angle of prism is given as 2° and its refractive index is 1.5. Then maximum deviation of any light ray incident on prism will be.

a) 1°

b) 2°

c) 3°

d) 1/2°

so, for thin prism, the minimum deviation is given as

\[\delta_{\text{min}} = (n-1) A \]

\[\Rightarrow \delta_{\text{min}} = (1.5-1) 2° \]

\[= 1° \]
Two bodies A and B of equal masses are weighs equally when body A is placed near to equator of earth and body B is placed at a height h above pole of earth, consider rotation of earth and $\omega =$ angular speed of earth, $g =$ acceleration due to gravity near to earth's surface, and $R =$ radius of earth.

Find h in terms of r, g, ω.

\[h = \frac{R^2 \omega^2}{2g} \]

\[h = \frac{R \omega^2}{2g} \]

\[h = \frac{g^2 \omega^2}{2g} \]

\[h = \frac{R^2 \omega^2}{g} \]

\[\text{Substitute for body A:} \]

\[V_A = mg - mR\omega^2 \]

\[\text{Now for body B:} \]

\[V_B = mg \left(1 - \frac{h}{R}\right) \]

\[g' = g \left(1 - \frac{h}{R}\right) \]

\[V_A = V_B \]

\[m(g - R\omega^2) = mg \left(1 - \frac{h}{R}\right) \]

\[\frac{g + R\omega^2}{R} = \frac{g'}{R} \]

\[h = \frac{R^2 \omega^2}{g} \]
Q9: For the given capacitor circuit, find charge on 5μF capacitor.

\[
\begin{align*}
\text{a)} & \quad \frac{120}{11} \, \mu C \\
\text{b)} & \quad \frac{140}{11} \, \mu C \\
\text{c)} & \quad \frac{160}{11} \, \mu C \\
\text{d)} & \quad \frac{160}{11} \, \mu C
\end{align*}
\]

soln: By using Kirchhoff's Law for given circuit

Let \(q_1 \) and \(q_2 \) are in \(\mu C \) unit.

For Loop 1 2 5 6

\[6 - \frac{q_1}{2} - \frac{q_1 + q_2}{5} = 0 \] \quad (1)

For Loop 3 4 5 6

\[6 - \frac{q_2}{4} - \frac{q_1 + q_2}{5} = 0 \] \quad (2)

By solving (1) \(\quad (2) \)

\[q_1 = \frac{60}{11} \, \mu C \quad \text{and} \quad q_2 = \frac{120}{11} \, \mu C \]

Then charge on 5μF \(\Rightarrow q_1 + q_2 = \frac{180}{11} \, \mu C \)
A car is moving with constant velocity towards a fixed wall and blows horn at a frequency of 440Hz. If an observer seating in car, observe frequency of 480Hz of reflected sound, then find speed of car if speed of sound is 350 m/s. (In km/h)

a) 62.70 c) 23.33
b) 54.70 d) 55.55

Solution:

From given condition

\[v_{source} = v_{0} \]
\[v_{observe} = v_{0} \]

Then

\[f_{apparent} = f_{0} \left(\frac{v_{0} + v_{observe}}{v_{0} - v_{source}} \right) = 480 \left(\frac{350 + v_{0}}{350 - v_{0}} \right) \]

\[480 = 440 \left(\frac{350 + v_{0}}{350 - v_{0}} \right) \Rightarrow v_{0} = \frac{350}{23} \text{ m/s} \]

Then for km/h

\[v_{0} = \frac{350}{25} \times \frac{3600}{1000} = 54.78 \text{ km/h} \]
A light gets incident on two different metal surfaces with energy 4 eV and 2.5 eV having work functions as $\phi_1\text{ eV}$ and $\phi_2\text{ eV}$ respectively. Now, if the maximum velocity of photons emitted is $v_1\text{ m/s}$ and $v_2\text{ m/s}$ respectively for a given metal surface, then find $\frac{v_1}{v_2}$.

\begin{align*}
\text{a) } & \sqrt{\frac{3 - \phi_1}{2.5 + \phi_2}} \\
\text{b) } & \sqrt{\frac{3 + \phi_1}{2.5 - \phi_2}} \\
\text{c) } & \sqrt{\frac{4 - \phi_1}{2.5 + \phi_2}} \\
\text{d) } & \sqrt{\frac{4 - \phi_1}{2.5 - \phi_2}}
\end{align*}

Solve:- By using energy conservation.

$$kE_{\text{max}} = E - \phi$$

for 1st emission

$$\frac{1}{2}mv_1^2 = 4 - \phi_1$$

$$v_1 = \sqrt{\frac{2(4 - \phi_1)}{m}}$$

for 2nd emission

$$\frac{1}{2}mv_2^2 = 2.5 - \phi_2$$

$$v_2 = \sqrt{\frac{2}{m}(2.5 - \phi_2)}$$

Then

$$\frac{v_1}{v_2} = \sqrt{\frac{4 - \phi_1}{2.5 - \phi_2}}$$
A ring oscillates in two different manners with time period T_1 and T_2 respectively as shown in figure. For T_1 time period, axis of rotation is passing from circumference and for T_2 time period, axis of rotation is perpendicular to plane of ring and passing from perimeter. Find $\frac{T_1}{T_2} =$

\[\begin{array}{c}
\text{Ti time period} \\
\includegraphics[width=0.3\textwidth]{ti.png}
\end{array} \quad \begin{array}{c}
\text{T2 time period} \\
\includegraphics[width=0.3\textwidth]{t2.png}
\end{array} \]

a) $\sqrt{\frac{3}{2}}$

b) $\sqrt{\frac{3}{8}}$

d) $\sqrt{\frac{2}{3}}$

d) $\sqrt{\frac{2}{3}}$

so $T_1 \propto \sqrt{I_1}$

then $\frac{T_1}{T_2} = \sqrt{\frac{I_1}{I_2}}$

Now $I_1 = \frac{MR^2}{2} + ml^2 = \frac{3}{2}ml^2$

$I_2 = ml^2 + mr^2 = 2ml^2$

Hence $\frac{T_1}{T_2} = \sqrt{\frac{3}{4}}$
4.14 A rod of length \(l \) and resistance \(R \) is sliding on rails of U-shaped wire as shown in figure. There exists an uniform magnetic field \(B \), which is perpendicular to the plane of arrangement, and it is moving uniformly on smooth rail with a velocity \(\nu \). Find current across the rod.

\[\vec{B} \times \vec{v} \]

\[I = \frac{B \nu}{R} \]

\[E = BL \nu \] (PD across rod)

Then apply Ohm's law for rod

\[E = IR \]

\[I = \frac{E}{R} = \frac{BL \nu}{R} \]
For a current carrying solenoid, turn density is given as 10 turns/cm. If iron core is fitted inside solenoid having relative permeability of 1000. Now a current of 0.5 A is flowing from wire of solenoid then find magnetic moment of solenoid if its volume is $10^{-3}m^3$.

a) 250 A·m²
b) 500 A·m²
c) 750 A·m²
d) 1000 A·m²

\[M = N \, \ell \, A \times \frac{1}{d} \left(\mu_r - 1 \right) \]

\[M = \frac{N \, \ell \, \nu}{d} = \frac{N \, \ell \, \nu}{d} \left(\mu_r - 1 \right) \]

\[M = 10 \times 0.5 \times 10^{-3} \left(\mu_r - 1 \right) \]

\[M = 5 \times 10^{-3} \left(1000 - 1 \right) \]

\[M = 499.5 \text{ A·m}^2 \]
A rocket has varying mass due to fuel exhaustion, \[
\frac{dm}{dt} = -b \frac{v^2}{m}
\]
Assume rocket to move in free space and \(v\) is instantaneous velocity then find acceleration of rocket if gases are leaving rocket at a rate of \(c\) units with respect to rocket (If mass of rocket at this instant is \(m\)).

\begin{align*}
a) \quad & \frac{bu^2}{mu} \\
\text{b) } \quad & \frac{bu^2}{2mu} \\
\text{c) } \quad & \frac{bu^2}{2m} \\
\text{d) } \quad & \frac{bu^2}{m}
\end{align*}

Solution: By applying variable-mass system concept

\[
F = v_2 \frac{dm}{dt}
\]
where \(v_2\) = relative velocity of leaving gas

\[
F = u \times (-b \frac{v^2}{m}) = ma
\]

\[
a = \frac{bu \frac{v^2}{m}}{m}
\]
A radioactive nucleus A converts in nucleus B and C with half life 10 sec and 100 sec respectively. Then what will be half life of A for both emissions? (Approx.)

a) 8 sec

b) 9 sec

c) 10 sec

d) 9.5 sec

Sol.:

\[-\frac{dN}{dt} = \lambda_1 N + \lambda_2 N \]

\[-\frac{dN}{dt} = (\lambda_1 + \lambda_2)N = \lambda_{eq} N \]

Now \(\lambda_{eq} = \lambda_1 + \lambda_2 \)

\[\frac{\ln 2}{T} = \frac{\ln 2}{10} + \frac{\ln 2}{100} \]

\[\frac{1}{T} = \frac{1}{10} + \frac{1}{100} = \frac{1}{10} \left(1 + \frac{1}{10}\right) \]

\[\frac{1}{T} = \frac{11}{100} \]

\[T = \frac{100}{11} \text{ sec} \approx 9 \text{ sec} \]
A uniform rod of mass 0.5 kg and length 1 m is suspended from one end and free to rotate in vertical plane by horizontal arms as shown in figure. A point mass 0.1 kg is moving with 30 m/s hit the free end of rod normally, and stick to rod then find angular speed of (rod+point mass) just after collision.

a) 10 rad/s
b) 20 rad/s
c) 5 rad/s
d) 15 rad/s

Solution: By using conservation of angular momentum about hinge point

\[L_{in} = L_{final} \]

\[(0.1 \times 0.5 \times 1) = \left(\frac{0.5 \times 1^2}{3} + 0.1 \times 1^2 \right) \omega \]

\[\omega = \frac{(0.3 + 0.1)}{0.1} \Rightarrow \omega = \frac{0.5}{0.1} = 50 \]

\[\omega = 20 \text{ rad/s} \]