- **4.** (i) When two lines intersect (looking like the letter X) we have two pairs of opposite angles. They are called *vertically opposite angles*. They are equal in measure.
 - (ii) A transversal is a line that intersects two or more lines at distinct points.
 - (iii) A transversal gives rise to several types of angles.
 - (iv) In the figure, we have

Types of Angles	Angles Shown
Interior	∠3, ∠4, ∠5, ∠6
Exterior	∠1, ∠2, ∠7, ∠8
Corresponding	$\angle 1$ and $\angle 5$, $\angle 2$ and $\angle 6$,
	$\angle 3$ and $\angle 7$, $\angle 4$ and $\angle 8$
Alternate interior	$\angle 3$ and $\angle 6$, $\angle 4$ and $\angle 5$
Alternate exterior	$\angle 1$ and $\angle 8$, $\angle 2$ and $\angle 7$
Interior, on the same	$\angle 3$ and $\angle 5$, $\angle 4$ and $\angle 6$
side of transversal	

(v) When a transversal case two *parallel* lines, we have the following interesting relationships:

Each pair of corresponding angles are equal.

$$\angle 1 = \angle 5$$
, $\angle 1 = \angle 1$, $\angle 2 = \angle 1$, $\angle 4 = \angle 1$

l pair of Gernate interior angles are equal.

$$\angle 3 = \angle 6$$
, $\angle 4 = \angle 5$

Each pair of interior angles on the same side of transversal are supplementary.

$$\angle 3 + \angle 5 = 180^{\circ}, \angle 4 + \angle 6 = 180^{\circ}$$

