Permutation & Combination Formulas

Permutation Formulas

★ When repetition is not allowed: P is a permutation or arrangement of r things from a set of n things without replacement. We define P as:

\[nP_r = \frac{n!}{(n-r)!} \]

★ When repetition is allowed: P is a permutation or arrangement of r things from a set of n things when repetition is allowed. We define P as:

\[nP_r = n^r \]

Derivation of Permutation Formula:

Let us assume that there are r boxes and each of them can hold one thing. There will be as many permutations as there are ways of filling in r vacant boxes by n objects.

- No. of ways the first box can be filled: \(n \)
- No. of ways the second box can be filled: \((n - 1) \)
- No. of ways the third box can be filled: \((n - 2) \)
- No. of ways the fourth box can be filled: \((n - 3) \)
- No. of ways \(r^{th} \) box can be filled: \([n - (r - 1)] \)

The number of permutations of \(n \) different objects taken \(r \) at a time, where \(0 < r \leq n \) and the objects do not repeat is: \(n(n - 1)(n - 2)(n - 3) \ldots (n - r + 1) \)

\[\Rightarrow nP_r = n(n - 1)(n - 2)(n - 3) \ldots (n - r + 1) \]

Multiplying and dividing by \((n - r) (n - r - 1) \ldots 3 \times 2 \times 1 \), we get:

\[nP_r = \frac{[n(n-1)(n-2)(n-3)\ldots(n-r+1)(n-r)(n-r-1)\ldots3\times2\times1]}{(n-r)(n-r-1)\ldots3\times2\times1} = \frac{n!}{(n-r)!} \]
\[nP_r = \frac{n!}{(n-r)!} \]

Combination Formulas

★ When repetition is not allowed: C is a combination of n distinct things taking r at a time (order is not important). We define C as:

\[nC_r = \frac{nP_r}{r!} = \frac{n!}{(n-r)!r!} \]

★ When repetition is allowed: C is a combination of n distinct things taking r at a time (order is not important) with repetition. We define C as:

\[nCr = \frac{(n + r - 1)!}{[r!(n - 1)!]} \]

Derivation of Combination Formula:

Let us assume that there are r boxes and each of them can hold one thing.

– No. of ways to select the first object from n distinct objects: \(n \)

– No. of ways to select the second object from \((n-1)\) distinct objects: \((n-1) \)

– No. of ways to select the third object from \((n-2)\) distinct objects: \((n-2) \)

– No. of ways to select \(r^{th}\) object from \([n-(r-1)]\) distinct objects: \([n-(r-1)]\)

Completing the selection of r things from the original set of n things creates an ordered subset of r elements.

\[\therefore \text{The number of ways to make a selection of } r \text{ elements of the original set of } n \text{ elements is: } n \]
\[(n - 1) \ (n - 2) \ (n-3) \ldots (n - (r - 1)) \text{ or } n \ (n - 1) \ (n - 2) \ldots (n - r + 1). \]

Let us consider the ordered subset of r elements and all its permutations. The total number of all permutations of this subset is equal to \(r! \) because \(r \) objects in every combination can be rearranged in \(r! \) ways.

Hence, the total number of permutations of n different things taken r at a time is \(nC_r \times r! \). It is nothing but \(nP_r \).

\[nP_r = nC_r \times r! \]
\[nC_r = \frac{nP_r}{r!} = \frac{n!}{(n-r)!r!} \]